Journal of the Korea Society of Computer and Information (한국컴퓨터정보학회논문지)
- Volume 10 Issue 5 Serial No. 37
- /
- Pages.27-32
- /
- 2005
- /
- 1598-849X(pISSN)
- /
- 2383-9945(eISSN)
Using Text Mining Techniques for Intrusion Detection Problem in Computer Network
텍스트 마이닝 기법을 이용한 컴퓨터 네트워크의 침입 탐지
- Published : 2005.11.01
Abstract
Recently there has been much interest in applying data mining to computer network intrusion detection. A new approach, based on the k-Nearest Neighbour(kNN) classifier, is used to classify Program behaviour as normal or intrusive. Each system call is treated as a word and the collection of system calls over each program execution as a document. These documents are then classified using kNN classifier, a Popular method in text mining. A simple example illustrates the proposed procedure.
최근 들어 데이터 마이닝 기법을 컴퓨터 네트워크의 침입 탐지에 적용하려는 많은 연구가 진행되고 있다. 본 논문에서는 침입 탐지 분야에서 프로그램 행위가 정상적인지 비정상적인지를 분류하기 위한 방법을 연구한다. 이를 위해, 택스트 마이닝 기법중의 하나인 k 최근접 이웃 (kNN) 분류기를 이용한 새로운 방법을 제안한다. 본 논문에서는 택스트 분류 기법을 적용하기 위해 각각의 시스템 호출을 단어로 간주하고, 시스템 호출의 집합들을 문서로 간주한다. 이러한 문서들은 kNN 분류기를 이용하여 분류된다. 간단한 예제를 통하여 제안하는 절차를 소개한다.