Expression and Purification of Ubiquitin-Specific Protease (UBP1) of Saccharomyces cerevisiae in Recombinant Escherichia Coli

  • Na, Kang-In (Department of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University) ;
  • Kim, Myoung-Dong (Department of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University) ;
  • Min, Won-Ki (Department of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University) ;
  • Kim, Jeong-Ah (Department of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University) ;
  • Lee, Woo-Jong (Korea Biotechnology Commercialization Center, Korea Institute of Industrial Technology) ;
  • Kim, Dae-Ok (Department of Food Science and Technology, Kyung Hee University) ;
  • Park, Kyung-Moon (Department of Chemical System Engineering, Hongik University) ;
  • Seo, Jin-Ho (Department of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University)
  • Published : 2005.12.31

Abstract

Truncated form of UBP1, an ubiquitin-specific protease of Saccharomyces cerevisiae, was overexpressed in Escherichia coli. The hexahistidine residue $(His_6)$ was fused to the N-terminus of truncated UBP1 and the corresponding recombinant protein was purified with high yield by immobilized metal affinity chromatography. The truncated form of UBP1 protein was functional to cleave ubiquitinated human growth hormone as substrate. Effects of pH and temperature were investigated in order to optimize deubiquitinating reactions for the truncated UBP1. Optimum temperature and pH for the cleavage reaction were $40^{\circ}C$ and pH 8.0, respectively.

Keywords

References

  1. Weissman, A. M. (2001) Ubiquitin and proteasomes: themes and variations on ubiquitylation. Nat. Rev. Mol. Cell Biol. 2: 169-178 https://doi.org/10.1038/35056563
  2. Jung, J. M., Y. B. Shin, M. G. Kim, H. S. Ro, H. T. Jung, and B. H. Chung (2004) A fusion protein expression analysis using surface plasmon resonance imaging. Anal. Biochem. 330: 251-260 https://doi.org/10.1016/j.ab.2004.02.009
  3. Schuster, M., A. Einhauer, E. Wasserbauer, F. SuBenbacher, C. Ortner, M. Paumann, G. Werner, and A. Jungbauer (2000) Protein expression in yeast: comparison of two expression strategies regarding protein maturation. J. Biotechnol. 84: 237-248 https://doi.org/10.1016/S0168-1656(00)00355-2
  4. Lee, C., S. G. Lee, S. Takahashi, and B. G. Kim (2003) The soluble expression of the human rennin binding protein using fusion partners: a comparison of ubiquitin, thioredoxin, maltose binding protein and NusA. Biotechnol. Bioprocess Eng. 8: 89-93 https://doi.org/10.1007/BF02940262
  5. Lee, E. K, J. H. Hwang, D. Y. Shin, D. I. Kim, and Y. J. Yoo (2005) Production of recombinant amyloid-$\beta$ peptide 42 as an ubiquitin extension. Prot. Exp. Purif. 40: 183-189 https://doi.org/10.1016/j.pep.2004.12.014
  6. Tobias, J. W. and A. Varshavsky (1991) Cloning and functional analysis of the ubiquitin-specific protease gene UBP1 of Saccharomyces cerevisiae. J. Biol. Chem. 266: 12021-12028
  7. Park, K. C., S. K. Woo, Y. J. Yoo, A. M. Wyndham, R. T. Baker, and C. H. Chung (1997) Purification and characterization of UBP6, a new ubiquitin specific protease in Saccharomyces cerevisiae. Arch. Biochem. Biophys. 347: 78-84 https://doi.org/10.1006/abbi.1997.0311
  8. Liu, C. C., H. I. Miller, W. J. Kohr, and J. I. Silber (1989) Purification of a ubiquitin protein peptidase from yeast with efficient in vitro assays. J. Biol. Chem. 264: 20331- 20338
  9. Wojtowicz, A., A. Mazurkiewicz-Pisarek, G. Plucienniczak, D. Mikiewicz-Sygula, L. Chojnacka, N. Lukasiewicz, and A. Plucienniczak (2005) Expression of yeast deubiquitination ezyme UBP1 analogues in E. coli. Micro. Cell Fact. 4: 1-12 https://doi.org/10.1186/1475-2859-4-1
  10. Wang, Y., P. Du, R. Gan, Z. Li, and Q. Ye (2005) Fedbatch cultivation of Escherichia coli YK537 (pAET-8) for production of phoA promoter-controlled human epithermal growth factor. Biotechnol. Bioprocess Eng. 10: 149- 154 https://doi.org/10.1007/BF02932585
  11. Guan, Y. X., H. X. Pan, Y. G. Gao, S. J. Yao, and M. G. Cho (2005) Refolding and purification of recombinant human interferon-$\gamma$ expressed as inclusion bodies in Escherichia coli using size exclusion chromatography. Biotechnol. Bioprocess Eng. 10: 122-127 https://doi.org/10.1007/BF02932581
  12. Kim, J. H., H. J. Kang, E. S. Kim, J. H. Kim, and Y. M. Koo (2004) One-step purification of poly-His tagged penicillin G acylase expressed in E. coli. J. Microbiol. Biotechnol. 14: 231-236
  13. Catanzaritti, A. M., T. A. Soboleva, D. A. Jans, P. G. Board, and R. T. Baker (2004) An efficient system for high-level expression and easy purification of authentic recombinant proteins. Prot. Sci. 13: 1331-1339 https://doi.org/10.1110/ps.04618904
  14. Baker, R. T. (1996) Protein expression using ubiquitin fusion and cleavage. Curr. Opin. Biotechnol. 7: 541-546 https://doi.org/10.1016/S0958-1669(96)80059-0
  15. Pilon, A., P. Yost, T. E. Chase, G. Lohnas, T. Burkett, S. Roberts, and W. E. Bentley (1997) Ubiquitin fusion technology: bioprocessing of peptides. Biotechnol. Prog. 13: 374-379 https://doi.org/10.1021/bp970040f