Biocompatibility of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Copolyesters Produced by Alcaligenes sp. MT-16

  • Choi, Gang-Guk (Department of Microbiology, Chungnam National University) ;
  • Kim, Hyung-Woo (Department of Microbiology, Chungnam National University) ;
  • Kim, Young-Baek (Department of Polymer Materials, PaiChai University) ;
  • Rhee, Young-Ha (Department of Microbiology, Chungnam National University)
  • Published : 2005.12.31

Abstract

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate), poly(3HB-co-3HV), copolyesters, with 3-hydroxyvalerate (3HV) contents ranging from 17 to 60 mol%, were produced by Alcaligenes sp. MT-16, and their biocompatibility evaluated by the growth of Chinese hamster ovary (CHO) cells and the adsorption of blood proteins and platelets onto their film surfaces. The number of CHO cells that adhered to and grew on these films was higher with increasing 3HV content. In contrast, the tendency for blood proteins and platelets to adhere to the copolyester surfaces significantly decreased with increasing 3HV content. Examination of the surface morphology using atomic force microscopy revealed that the surface roughness was an important factor in determining the biocompatibility of theses copolyesters. The results obtained in this study suggest that poly(3HB-co-3HV) copolyesters, with >30 mol% 3HV, may be useful in biocompatible biomedical applications.

Keywords

References

  1. Steinbuchel, A. and T. Lutke-Eversloh (2003) Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms. Biochem. Eng. J. 16: 81-96 https://doi.org/10.1016/S1369-703X(03)00036-6
  2. Zinn, M., B. Witholt, and T. Egli (2001) Occurrence, synthesis, and medical application of bacterial polyhydroxyalkanoate. Adv. Drug. Deliv. Rev. 53: 5-21 https://doi.org/10.1016/S0169-409X(01)00218-6
  3. Williams, S. F., D. P. Martin, D. M. Horowitz, and O. P. Peoples (1999) PHA applications: addressing the price issue: I. Tissue engineering. Int. J. Biol. Macromol. 25: 111- 121 https://doi.org/10.1016/S0141-8130(99)00022-7
  4. Feng, L., N. Yoshie, N. Asakawa, and Y. Inoue (2004) Comonomer-unit compositions, physical properties and biodegradability of bacterial copolyhydroxyalkanoates. Macromol. Biosci. 4: 186-198 https://doi.org/10.1002/mabi.200300092
  5. Doi, Y. (1990) Microbial polyester. VCH pulicher, Inc., New York, NY, USA
  6. Ramsay, B. A., K. Lomaliza, C. Chavarie, B. Dube, P. Bataille, and J. A. Ramsay (1990) Production of poly-($\beta$ - hydroxybutyric-co-$\beta$ -hydroxyvaleric) aicd. Appl. Environ. Microbiol. 56: 2093-2098
  7. Reusch, R. N. (1995) Low molecular weight complexed poly(3-hydroxybutyrate): a dynamic and versatile molecule in vivo. Can. J. Microbiol. 41 Suppl: 50-54 https://doi.org/10.1139/m95-167
  8. Tezcaner, A., K. Bugra, and V. Hasirci (2003) Retinal pigment epithelium cell culture on surface modified poly(hydroxybutyrate-co-hydroxyvalerate) thin films. Biomaterials 24: 4573-4583 https://doi.org/10.1016/S0142-9612(03)00302-8
  9. Gogolewski, S., M. Jovanovic, S. M. Perren, J. G. Dillon, and M. K. Hughes (1993) Tissue response and in vivo degradation of selected polyhydroxyacids: polylactides (PLA), poly(3-hydroxybutyrate) (PHB), and poly(3- hydroxybutyrate-co-3-hydroxyvalerate) (PHB/VA). J. Biomed. Mater. Res. 27: 1135-1148 https://doi.org/10.1002/jbm.820270904
  10. Rouxhet, L., F. Duhoux, O. Borecky, R. Legras, and Y. J. Schneider (1998) Adsorption of albumin, collagen, and fibronectin on the surface of poly(hydroxybutyrate-hydroxyvalerate) (PHB/HV) and of poly (epsilon-caprolactone) (PCL) films modified by an alkaline hydrolysis and of poly (ethylene terephtalate) (PET) track-etched membranes. J. Biomater. Sci. Polym. Edn. 9: 1279-1304 https://doi.org/10.1163/156856298X00398
  11. Choi, G. G., M. W. Kim, J. Y. Kim, and Y. H. Rhee (2003) Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with high molar fractions of 3-hydroxyvalerate by a threonine-overproducing mutant of Alcaligenes sp. SH-69. Biotechnol. Lett. 25: 665-670 https://doi.org/10.1023/A:1023437013044
  12. Choi, G. G., H. W. Kim, and Y. H. Rhee (2004) Enzymatic and non-enzymatic degradation of poly(3-hydroxybutyrate- co-3-hydroxyvalerate) copolyesters produced by Alcaligenes sp. MT-16. J. Microbiol. 42: 346-352
  13. Chung, S. H., G. G. Choi, H. W. Kim, and Y. H. Rhee (2001) Effect of levulinic acid on the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Ralstonia eutropha KHB-8862. J. Microbiol. 39: 79-82
  14. Kim, Y. B., D. Y. Kim, and Y. H. Rhee (1999) PHAs produced by Pseudomonas putida and Pseudomonas oleovorans grown with n-alkanoic acids containing aromatic groups. Macromolecules 32: 6058-6064 https://doi.org/10.1021/ma982033t
  15. Choi, J. I. and S. Y. Lee (2004) High level production of supra molecular weight poly(3-hydroxybutyrate) by metabolically engineered Escherichia coli. Biotechnol. Bioprocess Eng. 9: 196-200 https://doi.org/10.1007/BF02942292
  16. Kang, H. O., C. W. Chung, H. W. Kim, Y. B. Kim, and Y. H. Rhee (2001) Cometabolic biosynthesis of copolyesters consisting of 3-hydroxyvalerate and medium-chain-length 3-hydroxyalkanoates by Pseudomonas sp. DSY-82. Antonie Van Leeuwenhoek 80: 185-191 https://doi.org/10.1023/A:1012214029825
  17. Amiji, M. and K. Park (1993) Surface modification of polymeric biomaterials with poly(ethylene oxide), albumin, and heparin for reduced thrombogenicity. J. Biomater. Sci. Polym. Edn. 4: 217-234 https://doi.org/10.1163/156856293X00537
  18. Kottke-Marchant, K., J. M. Anderson, Y. Umemura, and R. E. Marchant (1989) Effect of albumin coating on the in vitro blood compatibility of Dacron$\circR$ arterial prostheses. Biomaterials 10: 147-155 https://doi.org/10.1016/0142-9612(89)90017-3
  19. Hahn, S. K. and A. S. Hoffman (2004) Characterization of biocompatible polyelectrolyte complex multilayer of hyaluronic acid and poly-L-lysine. Biotechnol. Bioprocess Eng. 9: 179-183 https://doi.org/10.1007/BF02942289
  20. Hahn, S. K., R. Ohri, and C. M. Giachelli (2005) Anticalcification of bovine pericardium for bioprosthetic heart valves after surface modification with hyaluronic acid derivatives. Biotechnol. Bioprocess Eng. 10: 218-224 https://doi.org/10.1007/BF02932016
  21. Fujimoto, K., H. Inoue, and Y. Ikada (1993) Protein adsorption and platelet adhesion onto polyurethane grafted with methoxy-poly(ethylene glycol) methacrylate by plasma technique. J. Biomed. Mater. Res. 27: 1559-1567 https://doi.org/10.1002/jbm.820271213
  22. Chung, C. W., H. W. Kim, Y. B. Kim, and Y. H. Rhee (2003) Poly(ethylene glycol)-grafted poly(3-hydroxyundecenoate) networks for enhanced blood compatibility. Int. J. Biol. Macromol. 32: 17-22 https://doi.org/10.1016/S0141-8130(03)00020-5
  23. Lee, J. H., J. W. Lee, G. S. Khang, and H. B. Lee (1997) Interaction of cells on chargeable functional group gradient surfaces. Biomaterials 18: 351-358 https://doi.org/10.1016/S0142-9612(96)00128-7
  24. Zao, K., Y. Deng, and G. Q. Chen (2003) Effects of surface morphology on the biocompatibility of polyhydroxyalkanoates. Biochem. Eng. J. 16: 115-123 https://doi.org/10.1016/S1369-703X(03)00029-9
  25. Kim, S. S., H. W. Kim, S. H. Yuk, S. Y. Oh, P. K. Pak, and H. B. Lee (1995) Blood and cell compatibility of gelatincarrageenan mixtures cross-linked by glutaraldehyde. Biomaterials 17: 813-821 https://doi.org/10.1016/0142-9612(96)81419-0
  26. Kim, Y. H., D. K. Han, K. D. Park, and S. H. Kim (2003) Enhanced blood compatibility of polymers grafted by sulfonated PEO via a negative cilia concept. Biomaterials 24: 2213-2223 https://doi.org/10.1016/S0142-9612(03)00023-1
  27. Kurano, N., C. Leist, F. Messi, S. Kurano, and A. Fiechter (1990) Growth behavior of Chinese hamster ovary cells in a compact loop bioreactor. 2. Effects of medium components and waste products. J. Biotechnol. 15: 113-128 https://doi.org/10.1016/0168-1656(90)90055-G
  28. Washburn, N. R., K. M. Yamada, C. G. Simon, Jr., S. B. Kennedy, and E. J. Amis (2004) High-throughput investigation of osteoblast response to polymer crystallinity: Influence of nanometer-scale roughness on proliferation. Biomaterials 25: 1215-1224 https://doi.org/10.1016/j.biomaterials.2003.08.043