토양의 DNA로부터 4-Hydroxyphenylpyruvate Dioxygenase 유전자 탐색 및 분리

Screening and Isolation of a Gene Encoding 4-Hydroxyphenylpyruvate Dioxygenase from a Metagenomic Library of Soil DNA

  • 윤상순 (농업생명공학연구원 미생물기능팀) ;
  • 이정한 (농업생명공학연구원 미생물기능팀) ;
  • 김수진 (농업생명공학연구원 미생물기능팀) ;
  • 김삼선 (농업생명공학연구원 미생물기능팀) ;
  • 박인철 (농업생명공학연구원 미생물기능팀) ;
  • 이미혜 (농업생명공학연구원 미생물기능팀) ;
  • 구본성 (농업생명공학연구원 미생물기능팀) ;
  • 윤상홍 (농업생명공학연구원 미생물기능팀) ;
  • 여윤수 (농업생명공학연구원 미생물기능팀)
  • Yun, Sang-Soon (Microbial Function Team, National Institute of Agricultural Biotechnology) ;
  • Lee, Jung-Han (Microbial Function Team, National Institute of Agricultural Biotechnology) ;
  • Kim, Soo-Jin (Microbial Function Team, National Institute of Agricultural Biotechnology) ;
  • Kim, Sam-Sun (Microbial Function Team, National Institute of Agricultural Biotechnology) ;
  • Park, In-Cheol (Microbial Function Team, National Institute of Agricultural Biotechnology) ;
  • Lee, Mi-Hye (Microbial Function Team, National Institute of Agricultural Biotechnology) ;
  • Koo, Bon-Sung (Microbial Function Team, National Institute of Agricultural Biotechnology) ;
  • Yoon, Sang-Hong (Microbial Function Team, National Institute of Agricultural Biotechnology) ;
  • Yeo, Yun-Soo (Microbial Function Team, National Institute of Agricultural Biotechnology)
  • 발행 : 2005.12.31

초록

난배양 미생물로부터 천연물질을 찾기 위하여 토양으로부터 직접분리 된 DNA와 cosmid vector를 이용하여 metagenomic library를 제작하고 탐색 하였다. 대장균에서 발현되는 유전자은행 초기 탐색 결과 LB배지에서 잘 자라면서 브라운 색깔을 내는 여러 개의 clone을 선발 하였다. 선발된 여러 후보 clone중 pYS85C는 돌연변이를 유도하였으며 색깔을 생산하지않는 clone 들에 대하여 염기서열을 결정 하였다. 돌연변이clone들로부터 결정된 pYS85C 염기서열 결과 아미노산이 393개이며 44.5 kDa으로 색소형성에 관여하는 4-hydroxyphenylpyruvic acid dioxygenase(HPPD) 유전자로 판명 되었다. 또한, BLAST비교 분석에서 이효소는 기존에 밝혀진 HPPD효소와 60% 정도의 identity를 보였고 C-말단에서는 많은 conserved domain이 있었다. 이러한 결과로 볼 때 천연물질을 합성 할 수 있는 유전자는 토양DNA로부터 직접 분리되어 발현될 수 있으며 이러한 기술은 새로운 물질을 찾는데 중요한 tool이 될 수 있다.

To access the natural products of uncultured microorganisms, we constructed and screened the metagenomic DNA libraries by using a cosmid vector and DNA inserts isolated directly from soil. Initial screening of the libraries in Escherichia coli resulted in the isolation of several clones that produce a dark brown color when grown in LB medium. One of the positive clones, designed pYS85C, was transposon mutagenized and the DNA surrounding the transposon insertions in cosmids that no longer conferred the production of brown pigment to E. coli was sequenced. Annotation of the pYS85C sequence obtained from the transposon mutagenesis experiment indicated a single 393 amino acid open reading frame (ORF) with a molecular mass of about 44.5 kDa, predicted to be a 4-hydroxyphenylpyruvate dioxygenases (HPPDs), was responsible for the observed brown pigment. In a BLAST search against deposited sequence, the translated protein from this ORF showed moderate-level identity (>60%) to the other known HPPDs and was most conserved in the C-terminal region of the protein. These results show that genes involved in natural product synthesis can be cloned directly from soil DNA and expressed in a heterologous host, supporting the idea that this technology has the potential to provide novel natural products from the wealth of environmental microbial diversity and is a potentially important new tool for drug discovery.

키워드

참고문헌

  1. Whitman, W. B., Coleman, D. C. and Wiebe, W. J. (1998) Prokaryotes: The unseen majority. Proc. Natl. Acad. Sci. USA 95, 6578-6583 https://doi.org/10.1073/pnas.95.12.6578
  2. Short, J. M. (1997) Recombinant approaches for accessing biodiversity. Nat. Biotechnol. 15, 1322-1323 https://doi.org/10.1038/nbt1297-1322
  3. Pace, N. R. (1997) A molecular view of microbial diversity and the biosphere. Science 276, 734-740 https://doi.org/10.1126/science.276.5313.734
  4. Waksman, S. A. and Tishler, M. (1942) The chemical nature of actinomycin, an anti-microbial substance produced by Actinomyces antibioticus. J. Biol. Chem. 142, 519-528
  5. Zaehner, H. and Fiedler, F. P. (1995) In Fifty years of antimicrobials: past perspectives and future trend. Cambridge University Press, England, pp. 67-84
  6. Handelsman, J., Rondon, M. R., Brady, S. F., Clardy, J. and Goodman, R. M. (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem. Biol. 5, 245-249 https://doi.org/10.1016/S1074-5521(98)90108-9
  7. Schleper, C., Swanson, R. V., Mathur, E. J. and DeLong, E. F. (1997) Characterization of a DNA polymerase from the uncultivated psychrophilic archaeon Cenarchaeum symbiosum. J. Bacteriol. 179, 7803-7811
  8. Eisen, J. A. (1998) Phylogenomics: improving functional predictions for uncharacterized genes by evolutionary analysis. Genome Res. 8, 163-167
  9. Rondon, M. R., August, P. R, Bettermann, A D., Brady, S. F., Grossman, T. H., Liles, M. R, Loiacono, K. A., Lynch, B. A., MacNeil, I. A., Minor, C., Tiong, C. L., Gilnan, M., Osbume, M. S., Clardy, J., Handelsman, J. and Goodman, R. M. (2000) Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl. Environ. Microbiol. 66, 2541-2547 https://doi.org/10.1128/AEM.66.6.2541-2547.2000
  10. Handelsman, J., Liles, M., Mann, D., Riesenfeld, C. and Goodman, R. M. (2002) Cloning the metagenome: culture-independent access to the diversity and functions of the uncultivated microbial world. Methods in Microbiology. 3, 241-255
  11. Wang, G. Y., Graziani, E., Waters, B. Pan, W. Li, X. McDermott, J. Meurer, G. Saxena, G, Andersen, R. J. and Davies, J. (2000) Novel natural products from soil DNA libraries in a streptomycete host. Org. Lett. 2, 2401-2404 https://doi.org/10.1021/ol005860z
  12. Brady, S. F., Chao, C. J., Handelsman, J. and Clardy, J. (2001) Cloning and heterologous expression of a natural product biosynthetic gene cluster from eDNA Orga. lett. 3, 1981-1984 https://doi.org/10.1021/ol015949k
  13. Gillespie, D. E., Brady, S. F., Bettermann, A. D., Cianciotto, N. P., Liles, M. R., Rondon, M. R., Clardy, J., Goodman, R. M. and Handelsman, J. (2002) Isolation of antibiotics turbomycin A and B from a metagenomic library of soil microbial DNA. Appl. Environ. Microbiol. 68, 4301-4306 https://doi.org/10.1128/AEM.68.9.4301-4306.2002
  14. Henne, A., Schmitz, R. A., Bomeke, M., Gottschalk, G. and Daniel, R. (2000) Screening of environmental DNA libraries for the presence of genes conferring lipolytic activity on Escherichia coli. Appl. Environ. Microbiol. 66, 3113-3116 https://doi.org/10.1128/AEM.66.7.3113-3116.2000
  15. Healy, F. G, Ray, R. M., Aldrich, H. C., Wilkie, A. C., Ingram, L. O. and Shanmugam, K. T. (1995) Direct isolation of functional genes encoding cellulases from the microbial consortia in a thermophilic, anaerobic digester maintained on lignocellulose. Appl. Microbiol. Biotechnol. 43, 667-674 https://doi.org/10.1007/BF00164771
  16. Richardson, T. H., Tan, X., Frey, G, Callen, W., Cabell, M., Lam, D., Macomber, J., Short, J. M., Robertson, D. E. and Miller, C. (2002) A novel, high performance enzyme for starch liquefaction. Discovery and optimization of a low-pH, thermostable alpha-amylase. J. Biol. Chem. 277, 26501-26507 https://doi.org/10.1074/jbc.M203183200
  17. Cottrell, M. T., Moore, J. A. and Kirchman, D. L. (1999) Chitinases from uncultured microorganisms. Appl. Environ. Microbiol. 65, 2553-2557
  18. Kavana, M. and Moran, G. R. (2003) Interaction of (4-hydroxyphenyl)pyruvate dioxygenase with the specific inhibitor 2-[2-nitro-4-(trifluoromethyl)benzoyl]-1,3-cyclohexanedione. Biochemistry 42, 10238-10245. https://doi.org/10.1021/bi034658b
  19. Moran, G. R. (2005) 4-hydroxyphenylpyruvate dioxygenase. Arch. Biochem. Biophys. 433, 117-128 https://doi.org/10.1016/j.abb.2004.08.015
  20. Norris, S. R., Barrette, T. R. and DellaPenna, D. (1995) Genetic dissection of carotenoid synthesis in Arabidopsis defmes plastoquinone as an essential component of phytoene desaturation. Plant Cell 7, 2139-2149 https://doi.org/10.1105/tpc.7.12.2139
  21. Zhou, J., Bruns, M. A. and Tiedje, J. M. (1996) DNA recovery from soils of diverse composition. Appl. Environ. Microbiol. 62, 316-322
  22. Burgmann, H., Pesaro, M., Widmer, F. and Zeyer, J. (2001) A strategy for optimizing quality and quantity of DNA extracted from soil. J. Microbial. Methods. 45, 7-20 https://doi.org/10.1016/S0167-7012(01)00213-5
  23. Vining, L. C. (1992) Secondary metabolism, inventive evolution and biochemical diversity-a review. Gene 115, 135-140 https://doi.org/10.1016/0378-1119(92)90551-Y
  24. Shizuya, H., Birren, B. Kim, U-J., Mancino, V., Slepak, T., Tachiri, Y. and Simon, M. (1992) Cloning and stable maitenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc. Natl. Acad. Sci. USA 89, 8794-8797 https://doi.org/10.1073/pnas.89.18.8794
  25. Brady, S. F., Chao, C. J. and Clardy, J. (2002) New natural product families from an environmental DNA(eDNA) gene cluster. J. Am. Chem. Soc. 124, 9968-9969 https://doi.org/10.1021/ja0268985
  26. Kim, S. J., Koo, B. S., Park, I. C., Yun, S. H., Yun, S. S., Sa, T. M. and Yeo, Y. S. (2004) Evaluation of DNA recovery from soil and sediment samples. Agric. Chem. Biotechnol. 47, 194-198
  27. MacNeil, I. A., Tiong, C. L., Minor, C., August, P. R., Grossman, T. H., Loiacono, K. A., Lynch, B. A., Phillips, T., Narula, S., Sundaramoorthi, R., Tyler, A., Aldredge, T., Long, H., Gilman, M., Holt, D. and Osburne, M. S. (2001) Expression and isolation of antimicrobial small molecules from soil DNA libraries. J. Mol. Microbiol. Biotechnol. 3, 301-308
  28. Denoya, C. D., D. D. Skinner, and M. R. Morgenstern. 1994. A Streptomyces avermitilis gene encoding a 4-hydroxy-phenylpyruvic acid dioxygenase-like protein that directs the production of homogentisic acid and an ochronotic pigment in Escherichia coli. J. Bacteriol. 176, 5312-5319