DEB 처리에 의해 유도된 벼 돌연변이 집단으로부터 도열병 감수성 돌연변이 분리

Isolation of Mutants Susceptible to Rice Blast from DEB-treated Rice Population

  • 김혜경 (경희대학교 생명공학원 및 식물대사연구센터) ;
  • 이상규 (경희대학교 생명공학원 및 식물대사연구센터) ;
  • 한무호 (경희대학교 생명공학원 및 식물대사연구센터) ;
  • 전용희 (농촌진흥청 작물과학원) ;
  • 이기환 (농촌진흥청 작물과학원 영남농업연구소) ;
  • 이윤형 (경희대학교 생명공학원 및 식물대사연구센터) ;
  • 부성희 (경희대학교 생명공학원 및 식물대사연구센터) ;
  • 한태룡 (경희대학교 생명공학원 및 식물대사연구센터) ;
  • 전종성 (경희대학교 생명공학원 및 식물대사연구센터)
  • Kim, Hye-Kyung (Graduate School of Biotechnology & Plant Metabolism Research Center, Kyung Hee University) ;
  • Lee, Sang-Kyu (Graduate School of Biotechnology & Plant Metabolism Research Center, Kyung Hee University) ;
  • Han, Mu-Ho (Graduate School of Biotechnology & Plant Metabolism Research Center, Kyung Hee University) ;
  • Jeon, Yong-Hee (National Institute of Crop Sciences, Rural Development Administration) ;
  • Lee, Gi-Hwan (Yeongnam Agricultural Research Institute, National Institute of Crop Science, Rural Development Administration) ;
  • Lee, Youn-Hyung (Graduate School of Biotechnology & Plant Metabolism Research Center, Kyung Hee University) ;
  • Bhoo, Seong-Hee (Graduate School of Biotechnology & Plant Metabolism Research Center, Kyung Hee University) ;
  • Hahn, Tae-Ryong (Graduate School of Biotechnology & Plant Metabolism Research Center, Kyung Hee University) ;
  • Jeon, Jong-Seong (Graduate School of Biotechnology & Plant Metabolism Research Center, Kyung Hee University)
  • 발행 : 2005.12.31

초록

도열병은 곰팡이 균(Magnaporthe grisea)에 의해 발병되는 것으로, 벼 수확량에 가장 큰 손실을 일으킨다. 본 연구에서는 벼 도열병 저항성 신호전달 체계에 관여하는 유전자를 분리하기 위하여 DEB(1, 3-Butadiene diepoxide) 처리를 통하여 벼 도열병 저항성 품종인 RIl260의 돌연변이 2,000여 종을 생산하고, 이들로부터 병 저항성 변이 개체를 조사하였다. 돌연변이 집단에서 백변종 돌연변이의 비율은 6.7%로 매우 높았으며, 이것은 DEB 처리에 의해서 생산된 집단 내에 돌연변이가 높은 빈도로 발생하였음을 보여준다. 돌연변이 집단의 병 저항성 분석을 통하여 완전히 혹은 부분적으로 벼 도열병에 저항성을 상실한 29개의 돌연변이체를 분리하였다. 이들 중에서 가장 심한 이병성 라인으로 확인된 M5465는 DNA 혼성화 반응 분석을 사용하여 분석하였으며, RIL260 품종에서 도열병 병 저항성과 밀접한 관련을 갖고 있는 것으로 보고된 Pi5(t) 유전좌위의 DNA 표지들이 실험에 사용되었다. 이 결과들은 M5465에서 Pi5(t) 유전좌위 내부에 DNA의 큰 결손 및 재배열이 있었음을 보여준다. 분리된 병 저항성 돌연변이 라인들은 Pi5(t)에 의해 매개된 도열병 저항성의 신호 전달 과정을 이해하는 데 유용하게 사용 될 수 있을 것이다.

Rice blast, which is caused by the fungus Magnaporthe grisea, is one of the most destructive diseases of rice. To identify genes involving in the signal transduction pathways that mediate rice blast resistance, we screened over 2,000 mutant lines of a highly resistant variety RIL260 that were generated by using a DEB (1, 3-Butadiene diepoxide) treatment method. In the mutant population, the frequency of albino plants was 6.7%, indicating that this population has a high frequency of mutations in the genome. The primary screening identified 29 mutant plants that exhibit a complete or partial loss of the resistance to rice blast. Among them, M5465, the most susceptible line, was subsequently examined by DNA gel-blot experiments using DNA molecular markers of Pi5(t) that has been previously identified as a durable resistance locus in RIL260. The result revealed that a large deletion and rearrangement of genomic DNA occurred in the Pi5(t) locus. The results suggest that DEB can be used as an efficient mutagen to induce large scale mutations in the rice genome. The isolated mutants should be useful for elucidating the Pi5(t)-mediated signaling pathways of rice blast resistance.

키워드

참고문헌

  1. Bonman, J. M. and Mackill, D. J. (1988) Durable resistance to rice blast. Oryza 25, 103-110
  2. Bonman, J. M., Vergel de Dios, T.I. and Khin, M. M. (1986) Physiological specialization of Pyricularia oryzaein the Philippines. Plant Disease 70, 767-769 https://doi.org/10.1094/PD-70-767
  3. International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436, 793-800 https://doi.org/10.1038/nature03895
  4. An, G, Jeong, D. H., Jung, K. H. and Lee, S. (2005) Reverse genetic approaches for functional genomics of rice. Plant Mol Biol. 59, 111-123 https://doi.org/10.1007/s11103-004-4037-y
  5. Jeon, J.-S. and An, G. (2001) Gene tagging in rice: a high throughput system for functional genomics. Plant Sci. 161, 211-219 https://doi.org/10.1016/S0168-9452(01)00414-9
  6. Jeong, D. H., An, S., Kang, H. G, Moon, S., Han, J., Park, S., Lee, H. S., An, K. and An, G. (2002). T-DNA insertional mutagenesis for activation tagging in rice. Plant Physiol. 130, 1636-1644 https://doi.org/10.1104/pp.014357
  7. Miyao, A., Tanaka, K., Murata, K., Sawaki, H., Takeda, S., Abe, K, Shinozuka, Y., Onosato, K. and Hirochika, H. (2003) Target site specificity of the Tos17 retrotransposon shows a preference for insertion within genes and against insertion in retrotransposon-rich regions of the genome. Plant Cell 15, 1771-1780 https://doi.org/10.1105/tpc.012559
  8. Izawa, T., Ohnishi, T., Nakano, T., Ishida, N., Enoki, H., Hashimoto, H., Itoh, K, Terada, R., Wu, C., Miyazaki, C., Endo, T., Iida, S. and Shimamoto, K (1997) Transposon tagging in rice. Plant Mol Biol. 35, 219-229 https://doi.org/10.1023/A:1005769605026
  9. Jean, J.-S., Lee, S., Jung, K-H., Jun, S.-H., Jeong, D. H., Lee, J., Kim, C., Jang, S., Yang, K, Nam, J., An, K, Han, M. J., Sung, R J., Choi, H. S., Yu, J. H., Choi, J. H., Cho, S. Y., Cha, S. S., Kim, S. I. and An, G. (2000) T-DNA insertional mutagenesis for functional genomics in rice. Plant J. 22, 561-570 https://doi.org/10.1046/j.1365-313x.2000.00767.x
  10. Li, X., Song, Y., Century, K., Straight, S., Ronald, P., Dong, X., Lassner, M. and Zhang, Y. (2001) A fast neutron deletion mutagenesis-based reverse genetics system for plants. Plant J. 27, 235-242 https://doi.org/10.1046/j.1365-313x.2001.01084.x
  11. Greene, E. A., Codomo, C. A., Taylor, N. E., Henikoff, J. G. Till, B. J., Reynolds, S. H., Enns, L. C., Burtner, C., Johnson, J. E., Odden, A. R., Comai, L. and Henikoff, S. (2003) Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis. Genetics. 164, 731-740
  12. Lawley, P. D. and Brookes, P. (1967) Interstrand cross-linking of DNA by difunctional alkylating agents. J. Mol. Biol. 25, 143-160 https://doi.org/10.1016/0022-2836(67)90285-9
  13. Lee, D. H., Kim, T. H., Lee, S. Y., Kim, H. J., Rhee, S. K., Yoon, B., Pfeifer, G. P. and Lee, C.S. (2002) Mutations induced by 1,3-butadiene metabolites, butadiene diolepoxide, and 1,2,3,4-diepoxybutane at the Hprt locus in CHO-Kl cells. Mol. Cells 14, 411-419
  14. Wang, G-L., Wu, C., Zeng, L., He, C., Baraoidan, M., de Assis Goes da Silva, F., Williams, C. E., Ronald, P. C. and Leung, H. (2004) Isolation and characterization of rice mutants compromised in Xa21-mediated resistance to X. oryzae pv. oryzae. Theor. Appl. Genet. 108, 379-384 https://doi.org/10.1007/s00122-003-1452-4
  15. Wang, G-L., Mackill, D. J., Bonman, J. M., McCouch, S. R., Champoux, M. C. and Nelson, R.J. (1994) RFLP mapping of genes conferringcomplete and partial resistance to blast in a durably resistance rice cultivar. Genetics 136, 1421-1434
  16. Chen, D.-H., Zeigler, R. S., Leung, H. and Nelson, R. J. (1995) Population structure of Pyricularia grisea at two screening sites in the Philippines. Phytopathology 85, 1011-1020 https://doi.org/10.1094/Phyto-85-1011
  17. Jeon, J.-S., Chen, D., Yi, G. H., Wang, G.-L. and Ronald, P.C. (2003) Genetic and physical mapping of Pi5(t), a locus associated with broad-spectrum resistance to rice blast. Mol. Genet. Genomics 269, 280-289
  18. Yi, G, Lee, S.-K., Hong, Y.-K., Cho, Y.-C., Nam, M.-H., Kim, S.-C., Han, S.-S., Wang, G-L., Hahn, T.-R., Ronald, P.C. and Jean, J.-S. (2004) Use of Pi5(t) markers in marker-assisted selection to screen for cultivars with resistance to Magnaporthe grisea. Theor Appl. Genet. 109, 978-985 https://doi.org/10.1007/s00122-004-1707-8
  19. Chen, D.-H., Zeigler, R. S., Abu, S.W. and Nelson, R.J. (1996) Phenotypic characterization of the rice blast resistance gene Pi2(t). Plant Dis. 80, 52-56 https://doi.org/10.1094/PD-80-0052
  20. Jeon, J.-S., Lee, S., Jung, K.-H., Jun, S.-H., Kim, C. and An, G. (2000) Tissue-preferential expression of a rice a-Tubulin gene, OsTubAl, mediated by the first intron. Plant Physiol. 123, 1005-1014 https://doi.org/10.1104/pp.123.3.1005
  21. Feldmann, K. A. (1991) T-DNA insertion mutagenesis in Arabidopsis: mutational spectrum. Plant J. 1, 71-82 https://doi.org/10.1111/j.1365-313X.1991.00071.x
  22. Nimchuk, Z., Eulgem, T., Holt, B. F. 3rd and Dangl, J. L. (2003) Recognition and response in the plant immune system. Annu. Rev. Genet. 37, 579-609 https://doi.org/10.1146/annurev.genet.37.110801.142628
  23. Innes, R. W. (1998) Genetic dissection of R gene signal transduction pathways. Curr. Opin. Plant Biol. 1, 229-304