DOI QR코드

DOI QR Code

PSEUDO-SYMMETRIC CONTACT 3-MANIFOLDS

  • CHO, JONG TAEK (Department of Mathematics, Chonnam National University) ;
  • INOGUCHI, JUN-ICHI (Department of Mathematics Education Facylty of Education Utsunomiya University)
  • Published : 2005.09.01

Abstract

Contact Homogeneous 3-manifolds are pseudo-symmetric spaces of constant type. All Sasakian 3-manifolds are pseudo-symmetric spaces of constant type.

Keywords

References

  1. L. Bianchi, Lezioni di Geometrie Differenziale, E. Spoerri Librao-Editore, 1894
  2. D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Math. 509 (1976), Springer-Verlag, Berlin-Heidelberg-New-York
  3. D. E. Blair, Th. Koufogiorgos and B. J. Papantoniou, Contact metric manifolds satisfying a nullity condition, Israel J. Math. 91 (1995), 189-214 https://doi.org/10.1007/BF02761646
  4. D. E. Blair, Th. Koufogiorgos, and R. Sharma, A classification of 3-dimensional contact metric manifolds with $Q{\varphi}={\varphi}Q$, Kodai Math. J. 13 (1990), 391-401 https://doi.org/10.2996/kmj/1138039284
  5. D. E. Blair and R. Sharma, Three-dimensional locally symmetric contact metric manifolds, Boll. Unione. Mat. Ital. Sez. A Mat. Soc. Cult. (8) 4 (1990), no. 3, 385-390
  6. D. E. Blair and L. Vanhecke, Symmetries and ${\varphi}-symmetric$spaces, Tohoku Math. J. 39 (1987), no. 2, 373-383 https://doi.org/10.2748/tmj/1178228284
  7. G. Calvaruso, D. Perrone, and L. Vanhecke, Homogeneity on three-dimensional contact metric manifolds , Israel J. Math. 114 (1999), 301-321 https://doi.org/10.1007/BF02785585
  8. E. Cartan, Lecon sur la geometrie des espaces de Riemann, Second Edition, Gauthier-Villards, Paris, 1946
  9. S. S. Chern and R. S. Hamilton, On Riemannian metrics adapted to three-dimensional contact manifolds, Lecture Notes in Math. 1111 (1985), Springer Verlag, 279-305
  10. J. T. Cho, A class of contact Riemannian manifolds whose associated CR-structure are integrable, Publ. Math. Debrecen 63 (2003), 193-211
  11. J. T. Cho and L. Vanhecke, Classification of symmetric-like contact metric $({\kappa},{\mu})$ spaces, Publ. Math. Debrecen 62 (2003), 337-349
  12. J. Deprez, R. Deszcz, and L. Verstraelen, Examples of pseudo-symmetric conformally flat warped products, Chinese J. Math. 17 (1989), 51-65
  13. R. Deszcz, On pseudosymmetric spaces, Bull. Soc. Math. Belg. 44 (1992), 1-34
  14. Y. Eliashberg and W. Thurston, Confoliations, AMS University Lecture Series 13 (1998)
  15. N. Hashimoto and M. Sekizawa, Three-dimensional conformally flat pseudo-symmetric spaces of constant type, Arch. Math. (Brno) 36 (2000), 279-286
  16. J. Inoguchi, Minimal surfaces in 3-dimensional solvable Lie groups, Chinese Ann. Math. Ser. B 24 (2003), 73-84 https://doi.org/10.1142/S0252959903000086
  17. J. Inoguchi, T. Kumamoto, N. Ohsugi, and Y. Suyama, Differential geometry of curves and surfaces in 3-dimensional homogeneous spaces III, Fukuoka Univ. Sci. Rep. 30 (2000), 131-160
  18. O. Kowalski, Spaces with volume preserving symmetries and related classes of Riemannian manifolds, Rend. Sem. Mat. Univ. Politec. Torino 64 (1983), 131- 159
  19. O. Kowalski, A classification of Riemannian 3-manifolds with constant principal Ricci curvatures ${\rho}_1={\rho}_2{\neq}{\rho}_3$, Nagoya Math. J. 132 (1993), 1-36 https://doi.org/10.1017/S002776300000461X
  20. O. Kowalski and M. Sekizawa, Local isometry classes of Riemannian 3-manifolds with constant Ricci eigenvalues ${\rho}_1={\rho}_2{\neq}{\rho}_3$ Arch. Math. (Brno) 32 (1996), 137-145
  21. O. Kowalski and M. Sekizawa, Three-dimensional Riemannian manifolds of c-conullity two, Riemann-ian Manifolds of Conullity Two, Chapter 11, World Scientific, Singapore, 1996
  22. O. Kowalski and M. Sekizawa, Pseudo-symmetric spaces of constant type in dimension three-elliptic spaces, Rend. Mat. Appl. (7) 17 (1997), 477-512
  23. O. Kowalski and M. Sekizawa, Pseudo-symmetric spaces of constant type in dimension three-non-elliptic spaces, Bull. Tokyo Gakugei Univ. (4) 50 (1998), 1-28
  24. J. Milnor, Curvature of left invariant metrics on Lie groups, Adv. Math. 21 (1976), 293-329 https://doi.org/10.1016/S0001-8708(76)80002-3
  25. B. O'Neill, Semi-Riemannian Geometry with Application to Relativity, Academic Press, Orland, 1983
  26. V. Patrangenaru, Classifying 3- and 4-dimensional homogeneous Riemannian manifolds by Cartan triples , Pacific J. Math. 173 (1996), 511-532 https://doi.org/10.2140/pjm.1996.173.511
  27. D. Perrone, Homogeneous contact Riemannian three-manifolds, Illinois J. Math. 13 (1997), 243-256
  28. T. Takahashi, Sasakian manifolds with pseudo-Riemannian metric, Tohoku Math. J. 21 (1969), 271-290 https://doi.org/10.2748/tmj/1178242996
  29. S. Tanno, Sur une variete de K-contact metrique de dimension 3, C. R. Math. Acad. Sci. Paris 263 (1966), A 317-A319
  30. S. Tanno, Locally symmetric K-contact Riemannian manifolds, Proc. Japan Acad. Ser. A Math. Sci. 43 (1967), 581-583
  31. S. Tanno, Variational problems on contact Riemannian manifolds, Trans. Amer. Math. Soc. 314 (1989), 349-379 https://doi.org/10.2307/2001446
  32. W. M. Thurston, Three-dimensional Geometry and Topology I, Princeton Math.Ser., vol. 35 (S. Levy, eds.), 1997
  33. F. Tricerri and L. Vanhecke, Homogeneous Structures on Riemannian Mani- folds, London Math. Soc. Lecture Note Ser. vol. 83, Cambridge Univ. Press, London, 1983

Cited by

  1. Reeb flow symmetry on almost contact three-manifolds vol.35, 2014, https://doi.org/10.1016/j.difgeo.2014.05.002
  2. THE UNIT TANGENT SPHERE BUNDLE WHOSE CHARACTERISTIC JACOBI OPERATOR IS PSEUDO-PARALLEL vol.53, pp.6, 2016, https://doi.org/10.4134/BKMS.b150897
  3. Two classes of pseudosymmetric contact metric 3-manifolds vol.239, pp.1, 2009, https://doi.org/10.2140/pjm.2009.239.17
  4. On the concircular curvature of a (κ,μ,ν)-manifold vol.269, pp.1, 2014, https://doi.org/10.2140/pjm.2014.269.113
  5. A Class of 3-dimensional Contact Metric Manifolds vol.10, pp.4, 2013, https://doi.org/10.1007/s00009-013-0284-y
  6. Three classes of pseudosymmetric contact metric 3-manifolds vol.245, pp.1, 2010, https://doi.org/10.2140/pjm.2010.245.57
  7. Some Classes of Pseudosymmetric Contact Metric 3-Manifolds vol.2012, 2012, https://doi.org/10.5402/2012/367467
  8. On η-Einstein Trans-Sasakian Manifolds vol.57, pp.2, 2011, https://doi.org/10.2478/v10157-011-0036-x
  9. REEB FLOW SYMMETRY ON ALMOST COSYMPLECTIC THREE-MANIFOLDS vol.53, pp.4, 2016, https://doi.org/10.4134/BKMS.b150656
  10. Semi-symmetric almost coKähler 3-manifolds vol.15, pp.02, 2018, https://doi.org/10.1142/S0219887818500317