Biodegradation of Phenanthrene by Psychrotrophic Bacteria from Lake Baikal

  • AHN TAE-SEOK (Department of Environmental Science, Kangwon National University) ;
  • LEE GEON-HYOUNG (Department of Biology, Kunsan National University) ;
  • SONG HONG-GYU (Division of Biological Sciences, Kangwon National University)
  • Published : 2005.10.01

Abstract

Psychrotrophic phenanthrene-degrading bacteria were identified in the sediment samples collected from Lake Baikal, Russia. Among 70 phenanthrene-degrading isolates, the seven that had the highest phenanthrene-degradation rates were identified by 16S rDNA sequencing. Isolate P25, identified as the Gram-positive rod-shaped organism Rhodococcus erythropolis, had the highest growth and degradation rate at $15^{\circ}C$. It could remove $26.0\%$ of 100 mg $1^{-1}$ phenanthrene in 20 days at $15^{\circ}C$, and degradation was less at $5^{\circ}C\;and\;25^{\circ}C$. The addition of surfactants to enhance degradation was tested. Brij 30 and Triton X-100 inhibited degradation at all surfactant concentrations tested, but Tween 80 stimulated phenanthrene degradation, especially at low concentrations. When $20{\times}$ CMC (critical micelle concentration) of Tween 80 was added, $38.0\%$ of 100 mg $1^{-1}$ phenanthrene was degraded in 12 days at $15^{\circ}C$. This psychrotrophic phenanthrene-degrading bacterium is a candidate for use in bioremediation of polycyclic hydrocarbon contamination in low temperature environments.

Keywords

References

  1. Ahmed, M. T., A. Dewedar, L. Mekki, and A. Diab. 1999. The efficacy of an oxidation pond in mineralizing some industrial waste products with special reference to fluorene degradation: A case study. Waste Management 19: 535-540 https://doi.org/10.1016/S0956-053X(99)00195-6
  2. Aislabie, J., M. McLeod, and R. Fraser. 1998. Potential for biodegradation of hydrocarbons in soil from the ross dependency, Antarctica. Appl. Microbiol. Biotechnol. 49: 210-214 https://doi.org/10.1007/s002530051160
  3. Aislabie, J., J. Foght, and D. Saul. 2000. Aromatic hydrocarbon-degrading bacteria from soil near Scott Base, Antarctica. Polar Biol. 23: 183-188 https://doi.org/10.1007/s003000050025
  4. Alexander, M. 1999. Biodegradation and Bioremediation, pp. 299-323. Academic Press, New York, U.S.A
  5. Baek, K., H. Kim, S. Moon, I. Lee, H. Oh, and B. Yoon. 2004. Effects of soil types on the biodegradation of crude oil by Nocardia sp. H17-1. J. Microbiol. Biotechnol. 14: 901-905
  6. de Carvalho, C. and M. da Fonseca. 2005. Degradation of hydrocarbons and alcohols at different temperatures and salinities by Rhodococcus erythropolis DCL14. FEMS Microbiol. Ecol. 51: 389-399 https://doi.org/10.1016/j.femsec.2004.09.010
  7. Cavicchioli, R., K. Siddiqui, D. Andrews, and K. Sowers. 2002. Low-temperature extremophiles and their applications. Curr. Opin. Biotechnol. 12: 253-261
  8. Chen, P., M. Pickard, and M. Gray. 2000. Surfactant inhibition of bacterial growth on solid anthracene. Biodegradation 11: 341-347 https://doi.org/10.1023/A:1011160004678
  9. Deschenes, L., P. Lafrance, J.-P. Villeneuve, and R. Samson. 1996. Adding sodium dodecyl sulfate and Pseudomonas aeruginosa UG2 biosurfactants inhibits polycyclic aromatic hydrocarbon biodegradation in a weathered creosote-contaminated soil. Appl. Microbiol. Biotechnol. 46: 638-646 https://doi.org/10.1007/s002530050874
  10. Eriksson, M., J. Ka, and W. Mohn. 2001. Effects of low temperature and freeze-thaw cycles on hydrocarbon biodegradation in Arctic tundra soil. Appl. Environ. Microbiol. 67: 5107-5112 https://doi.org/10.1128/AEM.67.11.5107-5112.2001
  11. Eriksson, M., E. Sodersten, Z. Yu, G. Dalhammar, and W. Mohn. 2003. Degradation of polycyclic aromatic hydrocarbons at low temperature under aerobic and nitrate-reducing condition in enrichment cultures from northern soils. Appl. Environ. Microbiol. 69: 275-284 https://doi.org/10.1128/AEM.69.1.275-284.2003
  12. Georlette, D., V. Blaise, T. Collins, S. D'Amico, E. Gratia, A. Hoyoux, J.-C. Marx, G. Sonan, G. Feller, and C. Gerday. 2004. Some like it cold: Biocatalysis at low temperatures. FEMS Microbiol. Rev. 28: 25-42 https://doi.org/10.1016/j.femsre.2003.07.003
  13. Han, K., Y. Jung, and S. Son. 2003. Phylogenetic analysis of phenanthrene-degrading Sphingomonas. J. Microbiol. Biotechnol. 13: 942-948
  14. Han, M., H. Choi, and H. Song. 2004. Degradation of phenanthrene by Trametes versicolor and its laccase. J. Microbiol. 42: 94-98
  15. Kalf, D., T. Crommentuijn, and E. van de Plassche. 1997. Environmental quality objectives for 10 polycyclic aromatic hydrocarbons (PAHs). Ecotoxicol. Environ. Safety 36: 89-97 https://doi.org/10.1006/eesa.1996.1495
  16. Kanaly, R. and S. Harayama. 2000. Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. J. Bacteriol. 182: 2059-2067 https://doi.org/10.1128/JB.182.8.2059-2067.2000
  17. Kim, I., J. Park, and K. Kim. 2001. Enhanced biodegradation of polycyclic aromatic hydrocarbons using nonionic surfactants in soil slurry. Appl. Geochem. 16: 1419-1428 https://doi.org/10.1016/S0883-2927(01)00043-9
  18. Kotterman, M., E. Vis, and J. Field. 1998, Successive mineralization and detoxification of benzo[a]pyrene by the white rot fungus Bjerkandera sp. strain BOS55 and indigenous microflora. Appl. Environ. Microbiol. 64: 2853-2858
  19. Lee, K., J. Park, and I. Ahn. 2003. Effect of additional carbon source on naphthalene biodegradation by Pseudomonas putida G7. J. Hazard. Mater. B105: 157-167
  20. Lowry, O., N. Rosebrough, A. Farr, and R. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265-275
  21. Maliszewska-Kordybach, B. 1993. The effect oftemperature on the rate of disappearance of polycyclic aromatic hydrocarbons from soils. Environ. Poll. 79: 15-20 https://doi.org/10.1016/0269-7491(93)90172-K
  22. Margesin, R. 2000. Potential of cold-adapted microorganisms for bioremediation of oil-polluted Alpine soils. Int. Biodet. Biodeg. 46: 3-10 https://doi.org/10.1016/S0964-8305(00)00049-4
  23. Margesin, R. and F. Schinner. 2001. Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl. Microbiol. Biotechnol. 56: 650-663 https://doi.org/10.1007/s002530100701
  24. Margesin, R., P.-A. Fonteyne, and B. Redl. 2005. Low-temperature biodegradation of high amounts of phenol by Rhodococcus spp. and basidiomycetous yeasts. Res. Microbiol. 156: 68-75 https://doi.org/10.1016/j.resmic.2004.08.002
  25. Mohn, W. and G Stewart. 2000. Limiting factors for hydrocarbon biodegradation at low temperature in Arctic soils. Soil Biol. Biochem. 32: 1161-1172 https://doi.org/10.1016/S0038-0717(00)00032-8
  26. Moran, B. and W. Hickey. 1997. Trichloroethylene biodegradation by mesophilic and psychrophilic ammonia oxidizers and methanotrophs in groundwater microcosms. Appl. Environ. Microbiol. 63: 3866-3871
  27. Oh, Y., D. Sim, and S. Kim. 2003. Effectiveness of bioremediation on oil-contaminated sand in intertidal zone. J. Microbiol. Biotechnol. 13: 437-443
  28. Samanta, S., O. Singh, and R. Jain. 2002. Polycyclic aromatic hydrocarbons: Environmental pollution and bioremediation. Trends Biotechnol. 20: 243-248 https://doi.org/10.1016/S0167-7799(02)01943-1
  29. Sepie, E., M. Bricelj, and H. Leskovsek. 2003, Toxicity of fluoranthene and its biodegradation metabolites to aquatic organisms. Chemosphere 52: 1125-1133 https://doi.org/10.1016/S0045-6535(03)00321-7
  30. Stanier, R., N. Palleroni, and M. Doudoroff. 1966. The aerobic pseudomonads; a taxonomic study. J. Gen. Microbiol. 43: 159-171 https://doi.org/10.1099/00221287-43-2-159
  31. Volkering, F., A. Breure, J. Andel, and W. Rulkens. 1995. Influence of non ionic surfactants on bioavailability and biodegradation of polycyclic aromatic hydrocarbons. Appl. Environ. Microbiol. 61: 1699-1705
  32. Whyte, L., J. Hawari, E. Zhou, L. Bourbonniere, W. Inniss, and C. Greer. 1998. Biodegradation of variable-chain length alkanes at low temperatures by a psychrotrophic Rhodococcus sp. Appl. Environ. Microbiol. 64: 2578-2584
  33. Woo, S. and J. Park. 2004. Biodegradation of aromatic compounds trom soil by drum bioreactor system. J. Microbiol. Biotechnol. 14: 435-441
  34. Yakimov, M., G. Gentile, V. Bruni, S. Cappello, G. D'Auria, P. Golyshin, and L. Giuliano. 2004. Crude oil-induced structural shift of coastal bacterial communities of rod bay (Terra Nova Bay, Ross Sea, Antarctica) and characterization of cultured cold-adapted hydrocarbonoclastic bacteria. FEMS Microbiol. Ecol. 49: 419-432 https://doi.org/10.1016/j.femsec.2004.04.018
  35. Yuan, S., S. Wei, and B. Chang. 2000. Biodegradation of polycyclic aromatic hydrocarbons by a mixed culture. Chemosphere 41: 1463-1468 https://doi.org/10.1016/S0045-6535(99)00522-6