DOI QR코드

DOI QR Code

Biosorption of Heavy Metals by Biomass of Seaweeds, Laminaria species, Ecklonia stolonifera, Gelidium amansii and Undaria pinnatifida

해조류(Laminaria species, Ecklonia stolonifera, Gelidium amansii, Undaria pinnatifida)에 의한 중금속 생물흡착 특성

  • Choi, Ik-Won (Department of Chemical Engineering, Osaka Prefecture University) ;
  • Kim, Sung-Un (Division of Applied life and Environmental Sciences, Sunchon National University) ;
  • Seo, Dong-Cheol (Division of Applied Life Science, Gyeongsang National University) ;
  • Kang, Byung-Hwa (Division of Applied life and Environmental Sciences, Sunchon National University) ;
  • Sohn, Bo-Kyoon (Division of Applied life and Environmental Sciences, Sunchon National University) ;
  • Rim, Yo-Sup (Division of Applied life and Environmental Sciences, Sunchon National University) ;
  • Heo, Jong-Soo (Division of Applied Life Science, Gyeongsang National University) ;
  • Cho, Ju-Sik (Division of Applied life and Environmental Sciences, Sunchon National University)
  • 최익원 (오사카부립대학 화학공학과) ;
  • 김성은 (순천대학교 생명환경과학부) ;
  • 서동철 (경상대학교 환경생명화학과) ;
  • 강병화 (순천대학교 생명환경과학부) ;
  • 손보균 (순천대학교 생명환경과학부) ;
  • 임요섭 (순천대학교 생명환경과학부) ;
  • 허종수 (경상대학교 환경생명화학과) ;
  • 조주식 (순천대학교 생명환경과학부)
  • Published : 2005.12.31

Abstract

The characteristics of heavy metal biosorption on the seaweeds were investigated to develop a biological treatment technology for wastewater polluted with heavy metals. The heavy metal biosorption on seaweeds ranked in the tallowing order: U. pinnatifida$\geq$E. stolonifera$\geq$Laminaria sp.>G. amansii. The Pb was biosorbed in the range of $93{\sim}99%$, and the Cu and Cd were biosorbed in the range of $70{\sim}80%$ at the concentration of the heavy metal of $100mg/{\ell}$ respectively. The seaweed which was pretreated with $CaCl_2$ solution improved the biosorption of the heavy metals. The temperature and pH didn't affect the biosorption of heavy metals. The Langmuir isotherm reasonably fit the data of heavy metal biosorption compared to the Freundlich isotherm. The affinity of metals on the biosorption ranked in the following order: Pb>Zn>Cu>Cd. The biosorption efficiency of the heavy metals on the U. pinnatifida decreased in the multi-component rather than the single component. The heavy metals adsorbed on the U. pinnatifida were recovered using 0.3%-NTA. U. pinnatifida among the seaweed used in this work showed the best performance for the biosorption of the heavy metals.

생물흡착현상을 이응한 중금속오염폐수 처리기술 개발을 위한 기초연구로서 중금속흡착능이 있는 것으로 알려진 U. pinnatifida, E. stolonifera, Laminaria sp., G. amansii 등 4종의 해조류를 대상으로 중금속 흡착 특성을 조사하였다. 해조류 종류별 중금속 흡착능력은 U. pinnatifida$\geq$E. stolonifera$\geq$Laminaria sp.>G. amansii 순이었으며, 중금속 $100mg/{\ell}$ 농도에서 Pb는 $93{\sim}99%$ 정도 흡착이 되었고, Cu와 Cd는 $70{\sim}80%$ 절도 흡착되었다. $CaCl_2$을 이용하여 해조류의 작용기를 치환함으로서 중금속 흡착 및 탈착성능이 개선되었으며, 온도와 pH에 따른 중금속 흡착 변화는 큰 차이가 없었다. U. pinnatifida의 중금속 흡착은 Freundlich 흡착등온식 보다는 Langmuir 흡착등온식에 잘 일치하였고, Cu, Cd 및 Zn에 비해서 Pb가 상당히 흡착친화도가 큰 것으로 나타났다. U. pinnatifida의 중금속별 흡착효율은 다성분계 중금속일 때가 단성분계일 때 보다 감소하였으며, 탈착제로서 NTA를 처리하였을때 흡착된 중금속의 탈착효율이 가장 높았다.

Keywords

References

  1. Cho, J. S., Park, I. N., Heo, J. S., and Lee, Y. S. (2004) Biosorption and desorption of heavy metals using Undaria sp., Kor. J. Environ. Agric. 23(2), 92-98 https://doi.org/10.5338/KJEA.2004.23.2.092
  2. Say, R., Denizli, A., and Arica, M. Y. (2001) Biosorption of cadmium (II), lead (II), and copper (II) with the filamentous fungus Phanerochaete chrysosporium, Bioresour. Technol. 76, 67-70 https://doi.org/10.1016/S0960-8524(00)00071-7
  3. Kuyucak, N. and Volesky, B. (1989) Accumulation of cobalt by marine alga, Biotechnology and Bioengineering. 33, 809-814 https://doi.org/10.1002/bit.260330703
  4. Gadd, G. M. (1988) Accumulation of metals by microorganisms and algae. In Biotechnology 6b : Special Microbial Processes, Rehm, H J. (Ed.). VCH Verlagsgesellschaft. Weinheim. Germany. 401-433
  5. Kuyucak, N. and Volesky, B. (1990) Biosorption by algal biomass. Biosorption of heavy metals. Volesky, B (Ed.). CRC Press. Inc., Boca Raton. FL. 173-198
  6. Volesky, B. and Holan, Z. R. (1995) Biosorption of heavy metals, Biotechnology Progress. 11(3), 235-250. https://doi.org/10.1021/bp00033a001
  7. Leusch, A., Holan, Z. R., and Volesky, B. (1995) Biosorption of heavy metals (Cd, Cu, Ni, Pb, Zn) by chemically-reinforced biomass of marine algae, J. Chem. Tech. Biotechnol. 62, 279-288 https://doi.org/10.1002/jctb.280620311
  8. Volesky, B. (1994) Advances in biosorption of metals : Selection of biomass types, FEMS Microbiology Reviews. 14, 291-302 https://doi.org/10.1111/j.1574-6976.1994.tb00102.x
  9. Kim, Y. H., Yoo, Y. J., and Lee, H. Y. (1995) Characteristics of lead adsorption by Undaria pinnatifida, Biotechnol. Lett. 17(3), 345-350 https://doi.org/10.1007/BF01190651
  10. Holan, Z. R. and Volesky, B. (1994) Biosorption of lead and nickel by biomass of marine algae, Biotechnol. Bioeng. 43(11), 1001-1009 https://doi.org/10.1002/bit.260431102
  11. Lister, S. K. and Line, M. A. (2001) Potential utilization of sewage sludge and paper mill waste for biosorption of metals from polluted waterways, Bioresour. Technol. 79, 35-39 https://doi.org/10.1016/S0960-8524(01)00035-9
  12. Matheickal, J. T. and Yu, Q. (1999) Biosorption of lead (II) copper (II) from aqueous solutions by pre-treated biomass of australian marine algae. Bioresource Technology. 69, 223
  13. Langmuir, I. (1918) The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc. 40(9), 1361-1403 https://doi.org/10.1021/ja02242a004
  14. Lee, M. G., Lim, J. H., and Kam, S. K. (2002) Biosorption characteristics in the mixed metal solution by biosorbents of marine brown algae, Korean J. Chem. Eng. 19(2), 277-284 https://doi.org/10.1007/BF02698414
  15. Derenne, S., Largeau, C., Wein, A. B., Hetenyi, M., Bardoux, G., and Mariotti, A. (2000) Origin of variations in organic matter abundance and composition in a lithologically homogeneous maar-type oil shale deposit, Org. Geochem. 31, 787-798 https://doi.org/10.1016/S0146-6380(00)00093-0
  16. Yang, J. and Volesky, B. (1999) Cadmium biosorption rate in protonated Sagassum biomass, Environ. Sci. Technol. 33, 751-757 https://doi.org/10.1021/es980412w
  17. Kuh, S. E. and Kim, D. S. (2001) Studies on the Characteristics of Cadmium Biosorption by Undaria pinnatifida, J. of KSEE. 23(12), 2065-2075
  18. Suh, K. H., Ahn, K. H., and Cho, M. C. (1999) Biosorption of $Pb^{2+}$ and $Cr^{3+}$ by using Sargassum homei, J. of the Korean Environmental Sciences Society. 8(3), 387-391
  19. Doyle, R. J., Matthews, T. H., and Streips, U. N. (1980) Chemical basis for selectivity of metal ions by the Bacillus subtilis cell wall, J. Bacteriol. 143(1), 471-480
  20. Guibal, E., Roulph, C., and Cloirec, P. L. (1992) Uranium biosorption by a filamentous fungus Mucor Miehei : pH effect on mechanisms and performances of uptake, Wat. Res. 26, 1139-1145 https://doi.org/10.1016/0043-1354(92)90151-S
  21. Flemming, C. A., Ferris, F. G., Beveridge, T. J., and Bailey, G. W. (1990) Remobilization of toxic heavy metals adsorbed to bacterial wall-clay composites, Appl. Environ. Microbiol. 56(10), 3191-3203
  22. Fourest, E. and Roux, J. C. (1992) Heavy metal biosorption by fungal mycelial by-products: rrechanism and influence of pH, Appl. Microbiol. Biotechnol. 37, 399-403 https://doi.org/10.1007/BF00211001
  23. Kuyucak, N. and Volesky, B. (1988) Biosorbents for recovery of metals from industrial solutions, Biotechnol. Lett. 10(2), 137-142 https://doi.org/10.1007/BF01024641
  24. De, R. and Gadd, G. M. (1987) Copper adsorption by Rhiwpus arrhizus, Cladosporium resinae and Penicillium iialicum, Appl. Microbiol. Biotechnol. 26, 84-90 https://doi.org/10.1007/BF00282153
  25. Makaskie, L. E. and Dean, A. C. R. (1984) Heavy metal accumulation by immobilized cells of a Citrobacter sp., Biotechnol. Lett. 6(2), 71-76 https://doi.org/10.1007/BF00127292
  26. Sakaguchi, T., Nakajima, A., and Horikoshi, T. (1981) Studies on the accumulation of heavy metal elements in biological systems. XVIII. Accumulation of molybdenum by green microalgae, Eur. J. Appl. Microbiol. Biotechnol. 12, 84-89 https://doi.org/10.1007/BF01970039
  27. Ruthven, D. W. (1984) Principles of adsorption and adsorption process, John Wiley & Sons, U.S.A
  28. Lee, M. G., Suh, J. H., Kam, S. K., Lee, D. H., and Oh, Y. H.(1997) Characteristics of lead biosorption by biosorbents of marine brown algae, J. of the Korean Environmental Sciences Society. 6(5), 531-539
  29. Suh, K. H., Ahn, K. H., Kim, B. J., Cho, J. K., Jin, H J., and Hong, Y. K. (1999) Biosorption and desorption of Pb by using Sargassum horneri, J. Korean Fish. Soc. 32(2), 333-337
  30. Yan, G. and Viraraghavan, Y. (2003) Heavy-metal removal from aqueous solution by fungus Mucor rouxii, Water Research. 37, 4486-4496 https://doi.org/10.1016/S0043-1354(03)00409-3

Cited by

  1. Evaluation of Antioxidant and Nitrite Scavenging Activity of Seaweed Extracts vol.21, pp.4, 2011, https://doi.org/10.5352/JLS.2011.21.4.576
  2. Adsorption Characteristics of Aqueous Phosphate Using Biochar Derived from Oak Tree vol.23, pp.3, 2015, https://doi.org/10.17137/korrae.2015.23.3.060
  3. Evaluation of Removal Efficiencies of Heavy Metals Using Brown Seaweed Biosorbent Under Different Biosorption Systems vol.30, pp.3, 2011, https://doi.org/10.5338/KJEA.2011.30.3.310
  4. Comparison of Heavy Metal Adsorption by Manganese Oxide-Coated Activated Carbon according to Manufacture Method vol.36, pp.1, 2014, https://doi.org/10.4491/KSEE.2014.36.1.7
  5. Effects of Acid Modification on Pb(II) and Cu(II) Adsorption of Bamboo-based Activated Carbon vol.24, pp.1, 2016, https://doi.org/10.17137/korrae.2016.24.1.3
  6. The Adsorption Behavior of Cu2+Fe2+onto Waste Seaweed in Acid Mine Drainage vol.14, pp.4, 2011, https://doi.org/10.1080/12269328.2011.10541348
  7. Adsorption Characteristics of Cd, Cu, Pb and Zn from Aqueous Solutions onto Reed Biochar vol.49, pp.5, 2016, https://doi.org/10.7745/KJSSF.2016.49.5.489
  8. Lead Adsorption by Carboxylated Alginic Acid and Its Application in Cleansing Cosmetics vol.43, pp.5, 2010, https://doi.org/10.5657/kfas.2010.43.5.400
  9. Adsorption Characteristics of Aqueous Ammonium Using Rice hull-Derived Biochar vol.34, pp.3, 2015, https://doi.org/10.5338/KJEA.2015.34.3.25
  10. Evaluation of In-vitro Anticoagulation Activity of 35 Different Seaweed Extracts vol.20, pp.11, 2010, https://doi.org/10.5352/JLS.2010.20.11.1640
  11. Antioxidant and α-glucosidase inhibition activity of seaweed extracts vol.22, pp.2, 2015, https://doi.org/10.11002/kjfp.2015.22.2.290
  12. Adsorption Characteristics of Heavy Metals using Sesame Waste Biochar vol.46, pp.1, 2013, https://doi.org/10.7745/KJSSF.2013.46.1.008
  13. Stabilization of mixed heavy metals in contaminated marine sediment using steel slag vol.38, pp.3, 2014, https://doi.org/10.5394/KINPR.2014.38.3.269
  14. Phosphorus Adsorption Characteristic of Ferronickel and Rapid Cooling Slags vol.33, pp.3, 2014, https://doi.org/10.5338/KJEA.2014.33.3.169
  15. Current research trends for heavy metals of agricultural soils and crop uptake in Korea vol.31, pp.1, 2012, https://doi.org/10.5338/KJEA.2012.31.1.75