DOI QR코드

DOI QR Code

Effects of Farming Practice and NO3-N Contents of Groundwater with Different locations under Intensive Greenhouse Area

시설재배지의 재배방법 및 입지적 조건이 지하수 NO3-N 함량에 미치는 영향

  • Ko, Jee-Yeon (National Institute of Crop Science, Yeongnam Agricultural Research Institute) ;
  • Lee, Jae-Sang (National Institute of Crop Science, Yeongnam Agricultural Research Institute) ;
  • Kim, Min-Tae (National Institute of Crop Science) ;
  • Kim, Choon-Song (National Institute of Crop Science, Yeongnam Agricultural Research Institute) ;
  • Kang, Ui-Gum (National Institute of Crop Science, Yeongnam Agricultural Research Institute) ;
  • Kang, Hang-Won (Rural Development Administration)
  • Published : 2005.09.30

Abstract

To investigate effects of fanning practice and $NO_3-N$ contents of groundwater in intensive horticultural greenhouse area of Yeongnam province, the groundwater samples from 1,370 sites were collected and analyzed. In addition, cultivation year, crops, desalinization methods, amounts of manure application, tube well depth and soil texture with clay contents were observed. Of the investigated sites, 19.7% of shallow groundwater and 1.3% of confined groundwater were exceeded over $10mg/{\ell}$ as the $NO_3-N$ drinking limit value, respectively. $NO_3-N$ concentration in groundwater was highly significantly correlative with clay content $(r=-0.241^{**})$, well depth $(r=-0.228^{**})$ and cultivation duration $(r=0.104^*)$, respectively. In case of desalting crop method being executed for desalinization of greenhouse soil, the $NO_3-N$ value of groundwater was lower than any other desalinization method. The fact that $NO_3-N$ contents of confined groundwater was affected by shallow groundwater was clarified by that $NO_3-N$ contents in shallow were significantly correlative with the confined groundwater $(r=0.532^{**})$.

농업활동 및 지하수의 입지적 조건이 시설재배지 지하수의 $NO_3-N$함량에 미치는 영향을 알아보고자 영남지역 10개 시군의 주요 시설재배단지에서 지하수 1370 지점의 $NO_3-N$ 함량을 조사하고, 재배조건으로서 시설재배지의 경작년수, 퇴비시용량, 제염방법 및 입지적 조건으로서 지하수깊이, 점토함량, 배수등급 등을 조사하였다. 조사된 지점 중 천층지하수의 19.7%, 암반지하수의 1.3%가 우리나라 음용수 수질기준인 $10mg/{\ell}$를 초과하였고, 농업용수 수질기준인 $20mg/{\ell}$를 초과하는 지점은 천층수 6.3%, 암반수 0.4%로 나타났다. 지하수 $NO_3-N$함량과 가장 상관이 높은 것은 점토함량 및 지하수깊이로 1% 수준에서 유의성이 인정되었다(점토함량 $r=-0.241^{**}$, 지하수깊이 $r=-0.228^{**}$). 재배조건에 따라서는 경작년수와 5% 수준에서 유의성이 인정되었으나(경작년수 $r=0.104^*$), 퇴비시용량 등과는 상관관계가 인정되지 않아 재배조건과 같은 농업활동보다는 토성과 깊이 등의 입지적 조건이 지하수 $NO_3-N$함량에 더 영향을 미치는 것으로 나타났다. 또한 천층수의 $NO_3-N$과 암반수의 $NO_3-N$ 함량 사이의 상관을 조사한 결과 양자 사이에는 고도의 정(正)의 상관$(r=0.532^{**})$이 인정되어 천층수의 수질이 암반수 $NO_3-N$함량에 영향을 미침을 알 수 있었다.

Keywords

References

  1. Magee, P. N. and Barnes, J. M. (1967) Carcinogenic nitroso compounds. Advan. Cancer. 10:163-246 https://doi.org/10.1016/S0065-230X(08)60079-2
  2. Ministri of Construction and Transportation. (1995) Underground Water Acts
  3. Baeg, C. O. Kang, S. G., and Lee, K. S. (1996) A status of agricultural water quality and improvable countermeasure in Korea. Kor. J. Environ. Agric. 15(4):506-519
  4. Kreitler, C. W. and Jones D. C. (1975) Natural soil nitrate: The cause of the nitrate contamination of groundwater in rural county, Texas Ground Water 13:53-61 https://doi.org/10.1111/j.1745-6584.1975.tb03065.x
  5. Pionke, H. B., Sharma, H. L., and Hischberg, K. J. (1990) Impact of irrigated horticulture nitrate concentrations in groundwater. Agri. Ecosyst. Environ. 32, 119-132 https://doi.org/10.1016/0167-8809(90)90128-Z
  6. Thorburn, P. J. Biggs, J. S., Weier, K. L., and Keating, B. A. (2002) Nitrate in groundwaters of intensive agricultural areas in coastal Northeastern Australia. Agriculture, Ecosystems and Environment. 1941:1-10
  7. Jung, G. B., Lee, J. S., and Kim, B. Y. (1996) Survey on groundwater quality under plastic film house cultivation areas in southern part of Gyeonggi province. J. Korean Soc. Soil Sci. Fert. 29(4):389-395
  8. Jung, Y. S., Yang, J. E. Joo, Y. K., Lee, J. Y. Park, Y. S. Choi, M. H, and Choi, S. C. (1997) Water quality of streams and agricultural wells related to different agricultural practices in small catchments of Han river Basin. Kor. J. Environ. Agric. 16(2): 199-205
  9. Kim, J. H, Lee, J. S., Kim, B. Y., Hong, S. G., and Ahn, S. K .(1999) Analysis of groundwater used for agriculture in Kyonggi province. Kor. J. Environ. Agric. 18(2):148-153
  10. Yun, S. G. and Yoo, S. H. (1993) Behavior of $NO_{3}$-N in soil and groundwater quality, Kor. J. Environ. Agric. 12(3):281-297
  11. Harris, G.R., Henry, B.D., and Deyette, J.S. (1996) Nitrate levels in shallow groundwater of upstate New York. USA. Environmentalist 16:307-311 https://doi.org/10.1007/BF02239657
  12. Walker, W. E. and Kroejer B. E. (1982) Nitrates in groundwater resulting from manure applications in irrigated croplands. EPA. 600/2-82-079. U.s. Environ. Protection Agency, Washington, D.C
  13. Di, H. J. and Cameron, K. C. (2002) Nitrate leaching in temperate agroecosystem : source, factors and mitigation strategies. Nutrient cycling in agoecosystems 46:237-256
  14. Dico. F., Leo J. M. B., Gerard van D., Tjomme de H, and Wimm D. de H (1998) Nitrogen monitoring in groundwater in sandy regions of the Netherlands. Envron. Pollution. 102 S1:479-485 https://doi.org/10.1016/S0269-7491(98)80072-9
  15. Strebel, O., Duynisveld, W. H. M., and Bottcher, J. (1989) Nitrate pollution of groundwater in western europe. Agriculture, Ecosystems and Environment 26:189-214 https://doi.org/10.1016/0167-8809(89)90013-3
  16. Cultural practice of cucurbitaceae plant (1996) Rural development administration
  17. Nielson, D. R., Biggar, J. W., and Wierenga, P. J. (1982). Nitrogen transport process in soil. Am. Soc. Agron., 423-448
  18. Han, K. W., Cho, J. Y., and Son, J. G. (1998) Losses of chemical components by infiltration water during the rice cultivation at silt loam paddy soil. Kor. J. Environ. Agric. 17(3):268-273
  19. Staver K. W. and Brinsfield R. B. (1998) Using cereal grain winter cover crops to reduce groundwater nitrate contamination in the mid-atlantic coastal plain. J. Soil Water Conserv. 53:230-240
  20. Steven, D. S. and Neilsen, G. H. (1990) Nitrogen additions and losses to drainage in orchard-type irrigation lysimeter. Can. J. Soil Sci. 70:11-19 https://doi.org/10.4141/cjss90-002
  21. Kolenbrander, G. J. (1981) Leaching of nitrogen in agriculture. In nitrogen losses and surface run-off. (ed. Brogan, J. C.) Nijhoff : 199-216
  22. Silva, R. G. Cameron K. C., Di H. J., and Hendry T. (1999) A lysimeter study of impact of cow urine, dairy shed effluent and nitrogen fertilizer on drainage water quality. Austr. J. Soil. Res. 37: 357-369 https://doi.org/10.1071/S98010
  23. Powlson D. S. Poulton P. R. Addiscott T. M., and McCann D. S. (1989) Leaching of nitrate from soils receiving organic or inorganic fertilizers continuously 135 years. In: Hansen J. A. A and Heriksen K (eds). Nitrogen in organic wastes applied to soils. Academic press, London, pp. 334-345
  24. Rasiah, V., Armour, J. D. Yamamoto, T., Mahendrarajah, S., and Heiner, D. H. (2003) Nitrate dynamics shallow groundwater and the potential for transport to off-site water bodies. Water, air, and soil pollution 147:183-202 https://doi.org/10.1023/A:1024529017142
  25. Jerome M., Patrick D., Chantal G. O, Philippe D., and Gerad G. (2002) Mechanism of nitrate transfer from soil to stream in an agricultural watershed of french rittany. Water, air, and soil pollution 133:161-183 https://doi.org/10.1023/A:1012903626192

Cited by

  1. Characteristics in Chemical Properties of Agricultural Groundwater in Gyeongnam Province vol.45, pp.5, 2012, https://doi.org/10.7745/KJSSF.2012.45.5.698
  2. State Indicator of Water Quality for Surface Water and Groundwater in Agriculture vol.48, pp.5, 2015, https://doi.org/10.7745/KJSSF.2015.48.5.509
  3. Establishment of Best Management Indicator for Sustainable Agricultural Water Quality using Delphi Survey Method vol.48, pp.5, 2015, https://doi.org/10.7745/KJSSF.2015.48.5.379