DOI QR코드

DOI QR Code

Effects of Simulated Acid Rain on Growth and Antioxidant System in French Marigold (Tagetes patula L.)

인공산성비가 만수국(Tagetes patula L.)의 생육 및 항산화 작용에 미치는 영향

  • Published : 2005.06.30

Abstract

This study was conducted to investigate the effect of simulated acid rain (SAR) on growth and antioxidant system in french marigold (Tagetes patula L.). Plants were subjected to four levels of SAR (pH 5.6, 4.0, 3.0, 2.0) in the growth chambers for 2 weeks. SAR decreased both plant height and plant dry weight of french marigold. As the pH levels decreased from 5.6 to 2.0, the content of MDA highly increased linearly. The ratios of dehydroascorbate/ascorbate and oxidized glutathione/reduced glutathione were significantly increased with decreasing pH levels. The enzyme (superoxide dismutase, ascorbate peroxidase etc.) activities of the plant affected by SAR were increased as the pH decreased. Based on the results, SAR caused oxidative stress in french marigold and resulted in significant reduction in plant growth. Biochemical protection responses might be activated to prevent the plant from damaging effects of oxidative stress generated in SAR.

도시의 화단 및 꽃길 조성용으로 많이 이용되고 있는 만수국을 대상으로 산성비에 의한 식물 피해 양상을 조사하고, 산성비 처리가 활성산소 생성에 의한 산화 스트레스를 일으키는지를 조사함과 동시에 산성비에 대한 식물의 생화학적 방어반응을 조사하기 위하여 여러 농도의 인공 산성비(pH 2.0, 3.0, 4.0, 5.6)를 제조하여 실험을 수행하였다. 산성비의 pH가 낮을수록 생육 피해는 심하게 나타났으며 pH 3.0 이하의 처리에 의해 암회색 또는 적갈색의 괴사 반점이 생성되었다. MDA 함량은 pH 2.0 처리에서 약 2배 정도의 증가를 나타내었다. 산성비의 $H^+$ 부하량 증가에 따라 DHA/AsA 및 GSSG/GSH의 비율이 증가하였다. SOD, AP, GP 등의 항산화효소 활성도 산성비의 $H^+$ 부하량의 증가에 따라 크게 증가하는 것으로 나타났다. 이상의 결과로 볼 때 산성비는 만수국 식물에 활성산소 생성에 의한 산화스트레스가 일으키며, 이를 무독화하기 위해 식물의 생화학적 방어반응이 작용하는 것으로 사료된다.

Keywords

References

  1. Luxmoore, R. J., Gizzard, T. and Strand, R. H. (1981) Nutrient translocation in the outer canopy and understory of an eastern deciduous forest, For. Sic. 27, 505-518
  2. Evans, L. S. and Curry, T. M. (1979) Differential response of plant foliage to simulated acid rain, Amer. J. Bot. 66, 953-962 https://doi.org/10.2307/2442237
  3. Haines, B., Stefani, M. and Hendrix, F. (1980) Acid rain: threshold of leaf damage in eight plant species from a southern Appalachian forest succession, Water, Air and Soil, Pollut. 114, 403-407
  4. Nouchi, I. (1991) Acid rain and plant damage, J. Agr. Met. 47, 165-175 https://doi.org/10.2480/agrmet.47.165
  5. Craker, L. E. and Bernstein, D. (1984) Buffering of acid rain by leaf tissue of selected crop plants, Environ. Pollut. 36, 375-381 https://doi.org/10.1016/0143-1471(84)90105-3
  6. Binns, W. O. and Redfern, D. B. (1992) Acid rain and forest decline in West Germany, Forestry Conmission Res. Dev. Paper 131, 13
  7. Zedaker, S. M., Nicholas, N. Y. and Eagar, C. (1988) Assesment of forest decline in the Southern Appalanchain surface fir forest, p.334-338. In Bucher, J. B. and Wallim, I. B. (eds.) Air pollution and forest decline, IUFRO, Switzerland
  8. Pylypec, B. and Redmann, R E. (1984) Acid-buffering capacity of foliage from boreal forest species, Can. J. Bot. 62, 2650-2653 https://doi.org/10.1139/b84-360
  9. Elstner, E. F. (1982) Oxygen activation and oxygen toxicity, Ann. Rev. Plant Physiol. 33, 73-96 https://doi.org/10.1146/annurev.pp.33.060182.000445
  10. Heath, R. L. and Packer, L. (1968) Photoperoxidation in isolated chloroplasts. 1. Kinetic and stoichiometry of fatty acid peroxidation, Arch. Biochem. Biophys. 125, 189-198 https://doi.org/10.1016/0003-9861(68)90654-1
  11. Kim, H. Y., Kobayashi, K., Nouchi, I. and Yoneyana, T. (1996) Differential influences of UV-B radiation on antioxidants and related enzymes between rice (Oryza sativa L.) and cucumber (Cucumis sativus L.) leaves, Environ. Sci. 9, 55-63
  12. Gabara, B., Sklodowska, M., Wyrwicka, A., Glinska, S. and Capinska, M. (2003) Changes in the ultrastructure of chloroplasts and mitochondria and antioxidant enzyme activity in Lycopersicon esculentum Mill. leaves sprayed with acid rain, Plant sci. 164, 507-516 https://doi.org/10.1016/S0168-9452(02)00447-8
  13. Velikova, V., Yordanov, I. and Edreva, A. (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants; Protective role of exogenous polyamine, Plant Sci. 151, 59-66 https://doi.org/10.1016/S0168-9452(99)00197-1
  14. Fan, H. B. and Wang, Y. H. (2000) Effects of simulated acid rain on germination, foliar damage, chlorophyll contents and seedling growth of five hardwood species growing in China, Forest Eco. Manage. 126, 321-329 https://doi.org/10.1016/S0378-1127(99)00103-6
  15. Huh, H. W. and Huh. M. K. (1998) The effect of simulated acid rain on the growth of important crops, J. Kor. Environ. Sci. 7, 123-131
  16. Singh, A. and Agrawal, M. (1996) Response of . two cultivars of Triticum aestivum L. to simulated acid rain, Environ. Pollut. 91, 161-167 https://doi.org/10.1016/0269-7491(95)00056-9
  17. Lichtenthaler, H. K. (1987) Chlorophylls and carotenoids: pigments of photosynthesis, Methods Enzymol. 148, 305-352
  18. Bolin, D. W. and Book, L. (1974) Oxidation of ascorbic acid to dehydroascorbic acid, Science 106, 451
  19. Law, N. Y., Charles, S. A. and Halliwell, B. (1983) Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts. The effect of hydrogen peroxide and paraquat, Biochem. J. 210, 899-903 https://doi.org/10.1042/bj2100899
  20. Schoner, S. and Krause, G. H. (1990) Protective systems against active oxygen species in spinach: response to cold accumulation in excess light, Planta 180, 383-389 https://doi.org/10.1007/BF01160394
  21. Tanaka, K., Kondo, N. and Sugahara, K. (1982) Accumulation of hydrogen peroxide in chloroplasts of $SO_2$ fumigated spinach leaves, Plant Cell Physiol. 23, 999-1007
  22. Hossain, M. A., Nakano, Y. and Asada, K. (1984) Monodehydroascorbate reductase in spinach chloro-plasts and its participation in regeneration of ascorbate for scavenging hydrogen peroxide, Plant Cell Physiol. 25, 385-395
  23. Tanaka, K. and Sugahara, K. (1980) Role of superoxide dismutase in defense against $SO_2$ oxicity and an increase in superoxide dismutase activity with $SO_2$ fumigation, Plant Cell Physiol. 21, 601-611 https://doi.org/10.1093/oxfordjournals.pcp.a076035
  24. Lee, J. J., Neely, G. E., Perrjiean, S. C. and Grothaus, L. C. (1981) Effects of simulated sulfuric acid rain on yield, growth and foliar injury of several crops, Environ. Exp. Bot. 21, 171-185 https://doi.org/10.1016/0098-8472(81)90024-1