References
- Cabo, M. L., Braber, A. F. and Konrrad, P. 2002. Apparent antifungal activity of several lactic acid bacteria against Penicillium discolor is due to acetic acid in the medium. J. Food Protect. 65: 1309-1316
- Coallier-Ascah, J. and Idziak, E. S. 1985. Interaction between Streptococcus lactis and Aspergillus jlavus on production of aflatoxin. Appl. Environ. Microbiol. 49: 163-167
- Dodd, H. M. and Gasson, M. J. 1994. Bacteriocins of lactic acid bacteria. Pp. 211-251. In: Gasson, M. J. and De Vos, W. M. Eds. Genetics and Biotechnology of Lactic Acid Bacteria. Blackie Academic and Professional London, London
- EI-Gendy, S. M. and Marth, E. H. 1981. Growth and aflatoxin production by Aspergillus parasticus in the presence of Lactobacillus casei. J. Food Protect. 44: 211-212
- Felsenstein, J. 1993. PHYLIP: Phylogenetic Inference Package. Version 3.5. Seattle, University of Washington, Washington, USA
- Gourama, H. and Bullerman, L. B. 1995. Inhibition of growth and aflatoxin production of Aspergillus jlavus by Lactobacillus species. J. Food Prot. 58: 1249-1256
- Guha, S. and Jaffe, P. R. 1996. Biodegradation kinetics of phenanthrene partitioned into the micellar phase of nonionic surfactants. Environ. Sci. Technol. 30: 605-611 https://doi.org/10.1021/es950385z
- Harris, L. J., Daeschel, M. A., Stiles, M. E. and Klaenhammuer, T. R. 1989. Antimicrobiol activity of lactic acid bacteria against Listeria monocytogenes. J. Food Protect. 52: 384-387
- Kim, H. T., Park, J. Y., Lee, G G and Kim, J. H. 2003. Isolation of a bacteriocin-producing Lactobacillus plantarum strain from Kimchi. Food Sci. Biotechnol. 12: 166-170
- Kim, S. K., Lee, E. J., Park, K. Y. and Jun, H. K. 1998. Bacteriocin produced by Lactobacillus curvatus SEI isolated from Kimchi. J. Microbiol. Biotechnol. 8: 588-594
- Klaenhammer, T. R. 1988. Bactericins of lactic acid bacteria. Biochimie 70: 337-349 https://doi.org/10.1016/0300-9084(88)90206-4
- Kobayashi, H. and Ritmann, B. E. 1982. Microbial removal of hazardous organic compounds. Environ. Sci. Technol. 16: 170-183
- Kumeda, Y., Asao, T., Takahashi, H. and Ichinoe, M. 2003. High prevalence of B and G aflatoxin-producing fungi in sugarcane field soil in Japan: heteroduplex panel analysis identifies a new genotype within Aspergillus section Flavi and Aspergillus nomius. FEMS Microbiol Ecol. 45: 229-238 https://doi.org/10.1016/S0168-6496(03)00154-5
- Lavermicocca, P., Valerio, F., Evidente, A., Lazzaroni, S., Corsetti, A. and Gobetti, M. 2000. Purification and characterization of novel antifungal compounds from the sourdough Lactobacillus plantarum strain 21B. Appl. Environ. Microbiol. 66: 4084-4090 https://doi.org/10.1128/AEM.66.9.4084-4090.2000
- Lee, H. J., Park, C. S., Joo, Y. J., Kim, S. H., Yoon, J. H., Park, Y. H., Hwang, I. K., Ahn, J. S. and Mheen, T. I. 1999. Identification and characterization of bacteriocin-producing lactic acid bacteria isolated from Kimchi. J Microbiol. Biotechnol. 9: 282-291
- Lindgren, S. E. and Dobrogosz, W. J. 1990. Antagonistic activities of lactic acid bacteria in food and feed fermentations. FEMS Microbiol. Rev. 87: 149-164 https://doi.org/10.1111/j.1574-6968.1990.tb04885.x
- Magnusson, J. and Schnurer, J. 2001. Lactobacillus coryniformis subsp. coryniformis strain SI3 produces a broad-spectrum proteinaceous antifungal compound. Appl. Environ. Microbiol. 67: 1-5 https://doi.org/10.1128/AEM.67.1.1-5.2001
- Magnusson, J., Strom, K., Roos, S., Sjogren, J. and Schnurer, J. 2003. Broad and complex antifungal activity among environmental isolates of lactic acid bacteria. FEMS Microbiol. Lett. 219: 129-135 https://doi.org/10.1016/S0378-1097(02)01207-7
- Nielson, P. V. and Rios, R. 2000. Inhibition of fungal growth on bread by volatile components from species and herbs, and the possible application in active package, with special emphasis on mustard essential oil. Int. J Food Microbiol. 60: 219-229 https://doi.org/10.1016/S0168-1605(00)00343-3
- Nigam, P., Armour, G., Banat, I. M., Singh, D. and Marchant, R. 2000. Physical removal of textile dyes and solid-state fermentation of dye-adsorbed agricultural residues. Bioresour. Technol. 72: 219-226 https://doi.org/10.1016/S0960-8524(99)00123-6
- Nikelson, L. and Kakobson, M. 1997. Quantitative risk analysis of aflatoxin toxicity for the consumers of 'KenKey'-a fermented maize product. Food Control 3: 149-159
- Niku-Paavola, M. L., Laitila, A., Mattila-Sandholm, T. and Haikara, A. 1999. New types of antimicrobial compounds produced by Lactobacillus plantarum. J Appl. Microbiol. 86: 29-35 https://doi.org/10.1046/j.1365-2672.1999.00632.x
- Okkers, D. J., Dicks, L. M. T., Silvester, M., Joubert, J. J. and Odendaal, H. J. 1999. Characterization of pentocin TV35b acteriocin-like peptide isolate from Lactobacillus pentosus with fungistic effect on Candida albicans. J Appl. Microbiol. 87: 726-734 https://doi.org/10.1046/j.1365-2672.1999.00918.x
- Pitt, J. I. and. Hocking, A. D. 1999. Fungi and food spoilage. Chapman & Hall, New York, N.Y
- Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425
- Stiles, J., Plockova, M., Toth, V. and Churnchalova, V. 1999. Inhibition of Fusarium sp. DMF by Lactobacillus strains grown in MRS and Elliker broth. Adv. Food Sci. 21: 117-121
- Stiles, M. E. 1996. Biopreservation by lactic acid bacteria. Antonie van Leeuwenhock 70: 331-345 https://doi.org/10.1007/BF00395940
-
Strom, K., Sjogren, J., Broberg, A. and Schnilrer, J. 2002. Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo (
$\iota$ -Phe-$\iota$ -Pro), and cycloCt-Phe-trans-4-OH-$\iota$ -Pro) and phenylacetic acid. Appl. Environ. Microbiol. 68: 4322-4327 https://doi.org/10.1128/AEM.68.9.4322-4327.2002 - Yoon, J.-H., Lee, S.-T., Kim, S.-B., Kim, W.-Y., Goodfellow, M. and Park, Y.-H. 1997. Restriction fragment length polymorphisms analysis of PCR-amplified 16S ribosomal DNA for rapid identification of Saccharomonospora strains. Int. J. Syst. Bacteriol. 47: 111-114 https://doi.org/10.1099/00207713-47-1-111
- Yuki, N., Watanabe, K., Mike, A., Togami, Y., Tanaka, R., Ohwaki, M. and Morotomi, M. 1999. Survival of a probiotic, Lactobacillus casei strain Shirota, in the gastrointestinal tract: Selective isolation from faces and identification using monoclonal antibodies. Int. J Food Microbiol. 48: 51-57 https://doi.org/10.1016/S0168-1605(99)00029-X
Cited by
- vol.35, pp.2, 2007, https://doi.org/10.4489/MYCO.2007.35.2.076
- YML007 and its application as a food preservative vol.57, pp.1, 2013, https://doi.org/10.1111/lam.12077
- Health Benefits of Kimchi (Korean Fermented Vegetables) as a Probiotic Food vol.17, pp.1, 2014, https://doi.org/10.1089/jmf.2013.3083
- Relationship Between Plant Food (Fruits, Vegetables, and Kimchi) Consumption and the Prevalence of Rhinitis Among Korean Adults: Based on the 2011 and 2012 Korea National Health and Nutrition Examination Survey Data vol.19, pp.12, 2016, https://doi.org/10.1089/jmf.2016.3760
- Antifungal-activity-producing lactic acid bacteria as biocontrol agents in plants vol.26, pp.11, 2016, https://doi.org/10.1080/09583157.2016.1213793
- vol.35, pp.1-2, 2016, https://doi.org/10.1080/15569543.2016.1178147
- Diversity and Control of Spoilage Fungi in Dairy Products: An Update vol.5, pp.3, 2017, https://doi.org/10.3390/microorganisms5030042
- Antimicrobial Ingredients as Preservative Booster and Components of Self-Preserving Cosmetic Products pp.1432-0991, 2018, https://doi.org/10.1007/s00284-018-1492-2