Design and Fabrication of 0.25 μm CMOS TIA Using Active Inductor Shunt Peaking

능동형 인덕터 Shuut Peaking을 이용한 0.25 μm CMOS TIA 설계 및 제작

  • Cho In-Ho (Ace Technologies Corp.) ;
  • Lim Yeongseog (School of Electronic, Computer and Telecommunications Engineering, Chonnam National University)
  • 조인호 ((주)에이스테크놀로지) ;
  • 임영석 (전남대학교 전자컴퓨터정보통신공학부)
  • Published : 2005.09.01

Abstract

This paper presents technique of wideband TIA for optical communication systems using TSMC 0.25 ${\mu}m$ CMOS RF-Mixed mode. In order to improve bandwidth characteristics of an TIA, we use active inductor shunt peaking to cascode and common-source configuration. The result shows the 37 mW and 45 mW power dissipation with 2.5 V bias and 61 dB$\Omega$ and 61.4 dB$\Omega$ transimpedance gain. And the -3 dB bandwidth of the TIA is enhanced from 0.8 GHz to 1.45 GHz in cascode and 0.61 GHz to 0.9 GHz in common-source. And the input noise current density is $5 pA/\sqrt{Hz}$ and $4.5 pA/\sqrt{Hz}$, and -10 dB out put return loss is obtained in 1.45 GHz. The total size of the chip is $1150{\times}940{\mu}m^2$.

본 논문에서는 TSMC 0.25 ${\mu}m$ CMOS RF-Mixed mode 공정 기술을 이용하여 초고속 광통신 시스템의 수신부에 사용되는 광대역 transimpedance amplifier를 설계하였다. 특히 광대역을 구성하기 위해 cascode와 common-source 구조에 active inductor shunt peaking을 이용하여 설계 및 제작하였으며, 측정 결과 gain 변화 없이 -3 dB 대역폭 특성이 cascode는 0.8 GHz에서 $81\%$ 증가한 1.45 GHz, common-source는 0.61 GHz에서 $48\%$ 증가한 0.9 GHz 결과가 나왔으며, 전체 파워 소비는 바이어스 2.5 V를 기준으로 37 mW와 45 mW이며, transimpedance gain은 61 dB$\Omega$과 61.4 dB$\Omega$을 얻을 수 있었다. 그리고 input noise current density도 상용 TIA와 거의 비슷한 $5 pA/\sqrt{Hz}$$4.5 pA/\sqrt{Hz}$를 가지며, out put Return loss는 전 대역에서 -10 dB 이하의 정합 특성을 보였다. 그리고 전체 chip 사이즈는 $1150{\times}940{\mu}m^2$이다.

Keywords

References

  1. Sunderarajan S. Mohan, et al., 'Bandwidth extension in CMOS with optimized on-chip inductors', IEEE Journal of Solid-state Circuits, vol. 35, no. 3, Mar. 2000
  2. Q. Huang, et al., 'The impact of scaling down to deep submicron on CMOS RF circuits', IEEE Journal of Solid-State Circuits, vol. 33, no. 7, Jul. 1998
  3. Behzad Razavi, Design of Analog CMOS Integrated Circutis, McGraw-Hill, New York, 2001
  4. Yu-Chang Chen, Shey-Shi Lu, 'Analysis and design of CMOS brodband amplifier with dual feedback loops', IEEE Asia-Pacific Conference, pp. 245-248, Aug. 2002
  5. Behzad Razavi, Design of Analog CMOS Integrated Circutis, McGraw-Hill, Chicago, 2001
  6. Behzad Razavi, Design of Integrated Circuits for Optical Communications, McGraw-Hill, New York, pp. 106-110, 2003
  7. Adel S. Sedra, Microelectronic Circuits, Oxford University Press, New York, pp. 622-626, 1998
  8. Behzad Razavi, Design of Integrated Circuits for Optical Communications, McGraw-Hill, New York, pp. 110-114, 2003
  9. Thomas H. Lee, The Design of CMOS Radio Frequency Integrated Circuit, Cambridge University Press, New York, 1998
  10. James J. Morikuni, Sung-Mo Kang, 'Analysis of inductive peaking in photoreceiver design', Journal of Lightwave Technology, vol. 10, no. 10, Oct. 1992
  11. Yong-Hun Oh, et al., 'A 2.5 Gb/s CMOS trans-impedance amplifier using a novel active inductor load', IEEE European Solid-State Circuits Conference, Sep. 2001