칼라 및 다해상도 질감 특징 결합에 의한 영상검색

Image Retrieval Using Combination of Color and Multiresolution Texture Features

  • 천영덕 (경북대학교 전자공학과 영상통신 연구실) ;
  • 성중기 (LG.PHILIPS LCD) ;
  • 김남철 (경북대학교 전자공학과 영상통신 연구실)
  • 발행 : 2005.09.01

초록

본 논문에서는 칼라 특징과 다해상도 질감 특징의 효율적인 결합에 근거한 내용기반 영상검색 기법을 제안한다. 칼라 특징으로는 칼라의 공간적인 상관관계를 잘 나타내는 HSV 칼라 오토코렐로그램(color autocorrelogram)을 선택하였고, 질감 특징으로는 국부 밝기 변화와 국부 질감의 부드러움 정도를 잘 측정하는 BDIP와 BVLC를 선택하였다. 이 질감 특징들은 칼라 영상의 휘도(luminance) 성분에서 웨이브렛(wavelet) 분해되어 다해상도로 추출되었다. 그리고 이들 칼라와 질감 특징들은 효율적인 유사도 측정을 위해 각각 이들의 차원들과 표준편차 벡터들에 의해 정규화된 후 결합되었다. 실험을 위한 영상으로는 Corel DB와 VisTex DB, 그리고 이들로부터 파생되어 다양한 해상도의 영상으로 구성된 Corel_MR DB와 VisTex_MR DB를 사용하였다. 실 험 결과, 제안한 방법은 Precision vs. Recall 평가에서 기존의 BDIPBVLC 방법과 칼라 오토코렐로그램 방법보다 각각 평균 $8\%$와 평균 $11\%$ 향상된 성능을 나타내었으며 웨이브렛. 모멘트, CSD, 히스토그램을 이용한 방법들보다 $10\%$ 이상의 높은 성능을 나타내었다. 특히, 제안한 방법이 다른 방법들 보다 다해상도로 구성된 영상 DB에서 높은 검색 성능 차이를나타내었다.

We propose a content-based image retrieval(CBIR) method based on an efncient combination of a color feature and multiresolution texture features. As a color feature, a HSV autocorrelograrn is chosen which is blown to measure spatial correlation of colors well. As texture features, BDIP and BVLC moments are chosen which is hewn to measure local intensity variations well and measure local texture smoothness well, respectively. The texture features are obtained in a wavelet pyramid of the luminance component of a color image. The extracted features are combined for efficient similarity computation by the normalization depending on their dimensions and standard deviation vectors. Experimental results show that the proposed method yielded average $8\%\;and\;11\%$ better performance in precision vs. recall than the method using BDIPBVLC moments and the method using color autocorrelograrn, respectively and yielded at least $10\%$ better performance than the methods using wavelet moments, CSD, color histogram. Specially, the proposed method shows an excellent performance over the other methods in image DBs contained images of various resolutions.

키워드

참고문헌

  1. A. W. M. Smeulders, M.. Worring, S. Santini, A. Gupta, and R. Jain, 'Contentbased image retreival at the end of the early years,' IEEE Trans. Pattern Anal. Mach. Intell. vol. 22, pp 1349-1380, Dec. 2000 https://doi.org/10.1109/34.895972
  2. S. Liapis and G. Tziritas, 'Color and texture image retrieval using chromaticity histograms and wavelet frames,' IEEE Trans. Multimedia, vol. 6, pp. 676-686, Oct. 2004 https://doi.org/10.1109/TMM.2004.834858
  3. A. Vadivel, A. K. Majumdar, and S. Sural, 'Characteristics of weighted feature vector in content-based image retrieval applications,' in Proc. IEEE Int. Conf. Intelligent Sensing and Information processing, Chennai, India, pp. 127-132, Jan. 2004
  4. M. J. Swain and D. H. Ballard, 'Color indexing,' Int. J. Computer Vision. vol. 7, pp. 11-32, 1991 https://doi.org/10.1007/BF00130487
  5. J. Huang, S R. Kumar, M. Mitra, W. J. Zhu, and R. Zabih, 'Image Indexing Using Color Correlograms', IEEE Proceedings of Computer Vision and Pattern Recognition, pp.762-768, 1997
  6. ISO/IEC 15938-3/FDIS Information technology multimedia content description interface part 3 visual, ISO/IEC/JTC1/SC29/WG11, Doc. N4358, July 2001
  7. R. M. Haralick, K. Shanmugam, and I. Dinstein, 'Texture features for image classification,' IEEE Trans. Syst. Man Cybern., vol. 8, pp. 610-621, Nov. 1973
  8. 서상용, 천영덕, 김남철, '엔트로피 특징을 이용한 영상검색,' 한국통신학회 논문지 제26권, 9B호, pp. 1283-1291, 2001
  9. 천영덕, 서상용, 김남철, '질감특징들의 융합을 이용한 영상검색,' 한국통신학회 논문지 제27권, 3A호, pp. 258-267, 2002
  10. D. Feng, W. C. Siu, and H. J. Zhang., Fundamentals of Content-based Image retrieval, in Multimedia Information Retrieval and Management-Technological Fundamentals and Applications, New York, NY, Springer, 2003
  11. Y. Rui and T. S. Huang, 'Image Retrieval: Current Techniques, Promising, Directions, and Open Issues,' J. Visual Communication and Image Representation, vol. 10, pp. 39-62, Oct. 1999 https://doi.org/10.1006/jvci.1999.0413
  12. J. R. Smith and S.-F Chang, 'Transform features for texture classification and discrimination in large image databases,' in Proc. IEEE Int. Conf. Image Processing, vol. 3, pp. 407-411, Nov. 1994 https://doi.org/10.1109/ICIP.1994.413817
  13. Y. D. Chun, S. Y. Seo, and N. C. Kim, 'Image retrieval using BDIP and BVLC moments,' IEEE Trans. Circuits Syst. Video Technol., vol.13, pp. 951-957, Sept. 2003 https://doi.org/10.1109/TCSVT.2003.816507
  14. Q. Iqbal and J. K. Aggarwal, 'Combining structure, color and texture for image retrieval: A performance evaluation,' in Proc. IEEE Int. Conf. Dept. of Electr. & Comput. Eng., vol. 2, pp. 438-443, Aug. 2002 https://doi.org/10.1109/ICPR.2002.1048333
  15. T. Gevers, A. W. M.. Smeulders, 'PicToSeek: combining color and shape invariant features for image retrieval,' IEEE Trans. Image Processing, vol. 9, pp. 102-119, Jan. 2000 https://doi.org/10.1109/83.817602
  16. H. Permuter, J. Francos, and I. H. Jermyn, 'Gaussian mixture models of texture and colour for image database retrieval,' in Proc. IEEE Int. Conf. Acoustics, Speech, Signal processing, vol. 3, pp. 569-572, Apr. 2003
  17. J. Huang, S. R. Kumar, M. Mitra, and W. J. Zhu, 'Spatial color indexing and applications,' Computer Vision, Sixth International Conference, pp. 602-607, 1998
  18. T. Ojala, M. Rautiainen, E. Matinmikko, and M. Aittola, 'Semantic image retrieval with HSV correlogram,' Proc. 12th Scandinavian Conf. On Image Analysis, Bergen, Norway, pp. 621-627, 2001
  19. G. Wyszecki and W. S. Stiles, Color science 2nd Edition, pp. 567-572, John Wiley & Sons, New York, 1982
  20. S. F. Chang, W. C. Horace J. Meng, H. Sundaram, and D. Zhong, 'A fully automated content-based video search engine supporting spatiotemporal queries,' IEEE Trans. Circuits Sys. Video Technol., vol. 8, no. 5, pp. 602-615, Sep. 1998 https://doi.org/10.1109/76.718507
  21. P. Ndjiki-Nya, J. Restat, T. Meiers, J. R. Ohm, A. Seyferth, and R. Sniehotta, 'Subjective evaluation of the MPEG-7 retrieval accuracy measure (ANMRR),' ISO/ WG11 MPEG Meeting, Geneva, Switzerland, Doc. M6029, May 2000