References
- F. Blanchard, E. Glasner, and E. Host, A variation on the variational principle and applications to entropy pairs, Ergodic Theory Dynam. Systems 17 (1997), 29-43 https://doi.org/10.1017/S0143385797069794
- F. Blanchard and Y. Lacroix, Zero entropy factors of topological flows, Proc. Amer. Math. Soc. 119 (1993), no. 2, 985-992
-
E. Glasner, A simple characterization of the set of
$\mu$ -entropy pairs and applica- tion, Israel J. Math. 102 (1997), 13-27 https://doi.org/10.1007/BF02773793 - E. Glasner, Ergodic theory via joinings, Math. Surverys Monogr. 101 (2003)
- T. Goodman Topological sequence entropy, Proc. London Math. Soc. 29 (1974), no. 3, 331-350
- W. Huang, S. Li, S. Shao, and X. Ye, Null systems and sequence entropy pairs, Ergodic Theory Dynam. Systems 23 (2003), no. 3, 1505-1523 https://doi.org/10.1017/S0143385702001724
- W. Huang, A. Maass, and X. Ye, Sequence entropy pairs for a measure, Ann. Inst. Fourier, to appear
-
P. Hulse, Sequence entropy relative to an invariant
$\sigma$ -algebra, J. London Math Soc. 33 (1986), no. 2, 59-72 https://doi.org/10.1112/jlms/s2-33.1.59 - M. Lemanczyk and A. Siemaszko, A note on the existence of a largest topological factors with zero entropy, Proc. Amer. Math. Soc. 129 (2001), 475-485 https://doi.org/10.1090/S0002-9939-00-05892-5
- K. K. Park and A. Siemaszko, Relative topological Pinsker factors and entropy pairs, Monatsh. Math. 134 (2001), 67-79 https://doi.org/10.1007/s006050170012
Cited by
- Relativization of dynamical properties vol.55, pp.5, 2012, https://doi.org/10.1007/s11425-011-4332-4