DOI QR코드

DOI QR Code

RELATIVE SEQUENCE ENTROPY PAIRS FOR A MEASURE AND RELATIVE TOPOLOGICAL KRONECKER FACTOR

  • Published : 2005.07.01

Abstract

Let $(X,\;B,\;{\mu},\;T)$ be a dynamical system and (Y, A, v, S) be a factor. We investigate the relative sequence entropy of a partition of X via the maximal compact extension of (Y, A, v, S). We define relative sequence entropy pairs and using them, we find the relative topological ${\mu}-Kronecker$ factor over (Y, v) which is the maximal topological factor having relative discrete spectrum over (Y, v). We also describe the topological Kronecker factor which is the maximal factor having discrete spectrum for any invariant measure.

Keywords

References

  1. F. Blanchard, E. Glasner, and E. Host, A variation on the variational principle and applications to entropy pairs, Ergodic Theory Dynam. Systems 17 (1997), 29-43 https://doi.org/10.1017/S0143385797069794
  2. F. Blanchard and Y. Lacroix, Zero entropy factors of topological flows, Proc. Amer. Math. Soc. 119 (1993), no. 2, 985-992
  3. E. Glasner, A simple characterization of the set of $\mu$-entropy pairs and applica- tion, Israel J. Math. 102 (1997), 13-27 https://doi.org/10.1007/BF02773793
  4. E. Glasner, Ergodic theory via joinings, Math. Surverys Monogr. 101 (2003)
  5. T. Goodman Topological sequence entropy, Proc. London Math. Soc. 29 (1974), no. 3, 331-350
  6. W. Huang, S. Li, S. Shao, and X. Ye, Null systems and sequence entropy pairs, Ergodic Theory Dynam. Systems 23 (2003), no. 3, 1505-1523 https://doi.org/10.1017/S0143385702001724
  7. W. Huang, A. Maass, and X. Ye, Sequence entropy pairs for a measure, Ann. Inst. Fourier, to appear
  8. P. Hulse, Sequence entropy relative to an invariant $\sigma$-algebra, J. London Math Soc. 33 (1986), no. 2, 59-72 https://doi.org/10.1112/jlms/s2-33.1.59
  9. M. Lemanczyk and A. Siemaszko, A note on the existence of a largest topological factors with zero entropy, Proc. Amer. Math. Soc. 129 (2001), 475-485 https://doi.org/10.1090/S0002-9939-00-05892-5
  10. K. K. Park and A. Siemaszko, Relative topological Pinsker factors and entropy pairs, Monatsh. Math. 134 (2001), 67-79 https://doi.org/10.1007/s006050170012

Cited by

  1. Relativization of dynamical properties vol.55, pp.5, 2012, https://doi.org/10.1007/s11425-011-4332-4