Construction Algorithm of Grassmann Space Parameters in Linear Output Feedback Systems

  • Kim Su-Woon (Department of Electrical and Electronic Engineering, Cheju National University)
  • Published : 2005.09.01

Abstract

A general construction algorithm of the Grassmann space parameters in linear systems - so-called, the Plucker matrix, 'L' in m-input, p-output, n-th order static output feedback systems and the Plucker matrix, $'L^{aug}'$ in augmented (m+d)-input, (p+d)-output, (n+d)-th order static output feedback systems - is presented for numerical checking of necessary conditions of complete static and complete minimum d-th order dynamic output feedback pole-assignments, respectively, and also for discernment of deterministic computation condition of their pole-assignable real solutions. Through the construction of L, it is shown that certain generically pole-assignable strictly proper mp > n system is actually none pole-assignable over any (real and complex) output feedbacks, by intrinsic rank deficiency of some submatrix of L. And it is also concretely illustrated that this none pole-assignable mp > n system by static output feedback can be arbitrary pole-assignable system via minimum d-th order dynamic output feedback, which is constructed by deterministic computation under full­rank of some submatrix of $L^{aug}$.

Keywords

References

  1. C. I. Byrnes, 'Pole-assignment by output feedback,' Lecture Notes in Control and Infor. Siences, vol. 135, pp. 31-78, Spring-Verlag, Berlin, Heideberg, New York, 1989
  2. D. S. Bernstein, 'Some open problems in matrix theory arising in linear systems and control,' Linear Algebra and its Applications, pp. 409- 432, 1992
  3. H. Kimura, 'Pole assignment by output feedback: A longstanding open problem,' Proc. of Conf. Decision Control, vol. 12, pp. 2101- 2105, 1994
  4. V. Blondel, M. Gevers, and A. Linquist, 'Survey on the state of systems and control,' European J. Control, vol. 1, pp. 5-23, 1995 https://doi.org/10.1016/S0947-3580(95)70004-8
  5. V. L. Syrmos, C. Abdallah, P. Dorato, and K. Grigoriadis, 'Static output feedback: A survey,' Automatica, vol. 33, pp. 125-137, 1997 https://doi.org/10.1016/S0005-1098(96)00141-0
  6. J. Rosenthal and J. C. Willems, 'Open problems in the area of pole placement,' Open problems in mathematical systems and control (Blondel, Sontag, Vidyasagar and Willems(Eds): Springer), vol. 37, pp. 181-191, 1999
  7. R. Hermann and C. F. Martin, 'Application of algebraic geometry to system theory. Part-I,' IEEE Trans. on Automatic Control, vol. 22, pp. 19-25, 1977 https://doi.org/10.1109/TAC.1977.1101395
  8. Y. Yang and A. L. Tits, 'Generic pole assignment may produce very fragile designs,' Proc. of the 37rd conf. on Decision and Control, Tampa, FL, USA, pp. 1745-1746, 1998
  9. L. Carotenuto, G. Franze, and P. Muraca, 'Some results on the genericity of the pole assignment problem,' System and Control Letters, vol. 42, pp. 291-298, 2001 https://doi.org/10.1016/S0167-6911(00)00106-7
  10. S.-W. Kim, 'Mismatching problem between generic pole-assignabilities by static output feedback and dynamic output feedback in linear system,' International Journal of Control, Automation, and System, vol. 3, no. 1, pp. 56-69, 2005
  11. C. Giannakopoulos and N. Karcanias, 'Pole assignment of strictly and proper linear system by constant output feedback,' International Journal of Control, vol. 42, pp. 543-565, 1985 https://doi.org/10.1080/00207178508933382
  12. N. Karcanias and C. Giannakopoulos, 'Grassmann invariants, almost zeros and the determinantal zeros, pole assignment problems of linear multivariable systems,' International Journal of Control, vol. 40, pp. 673-698, 1984 https://doi.org/10.1080/00207178408933300
  13. J. C. Willems and W. H. Hesselink, 'Generic properties of the pole assignment problem,' Proc. IFAC, Helsinki, Finland, pp.1725-1729, 1978
  14. A. S. Morse, W. A. Wolovich, and B. D. O. Anderson, 'Generic pole assignment: Preliminary results,' IEEE Trans. on Automatic Control, vol. 28, no. 4, pp. 503-506, 1983 https://doi.org/10.1109/TAC.1983.1103249
  15. X. Wang, 'Pole placement by static output feedback,' Journal of mathematical systems, Estimation and Control, vol. 2, no. 2, pp. 205-218, 1992
  16. J. V. Chipalkatti, 'Notes on Grassmannians and Schubert varieties,' Queen's papers in Pure and Applied Math. 13, no. 119, 2001
  17. M. Marcus and H. Minc, A Survey of Matrix Theory and Matrix Inequalities, Dover Publications, Inc., 1969
  18. S. L. Kleiman and D. Laksov, 'Schubert calculus,' America Math. Monthly, vol. 79, pp. 1061-1082, 1972 https://doi.org/10.2307/2317421
  19. A. G. J. McFarlane and N. Karcanias, 'Pole and zeros of linear multivariable systems: The algebraic, geometric and complex-variable theory,' International Journal of Control, vol. 24, pp. 33-74, 1976 https://doi.org/10.1080/00207177608932805
  20. M. W. Hirsch, Differential Topology, Springer- Verlag, 1980
  21. S. Billey and V. Lakshmibai, Singular Loci of Schubert Varieties, Birkhauser, 2000
  22. J. Rosenthal and X. Wang, 'Output feedback pole placement with dynamic compensators,' IEEE Trans. on Automatic Control, vol. 41, pp. 830-843, 1996 https://doi.org/10.1109/9.506235
  23. M. T. Söylemez and N. Munro, 'A parametric solution to the pole assignment using dynamic output feedback,' IEEE Trans. on Automatic Control, vol. 46, pp. 711-723, 2001 https://doi.org/10.1109/9.920789
  24. B. Huber and J. Verschelde, 'Pieri homotopies for problems in enumerative geometry applied to pole placement in linear systems control,' SIAM J. Contr. Opt., vol. 38, pp. 1265-1287, 2000 https://doi.org/10.1137/S036301299935657X
  25. S. Billey and A. Postnikov, 'Smoothness of Schubert varieties via patterns in root subsystems,' Advances in Applied Mathematics, vol. 34, pp. 447-466, 2005 https://doi.org/10.1016/j.aam.2004.08.003