The Sr and Pb Isotopic and Geochemical Properties of the Atmospheric Bulk Deposition of Jeonju, Gunsan, and Namweon Areas

전주, 군산, 남원지역 강수의 Sr, Pb동위원소 지화학

  • Jeon Seo-Ryeong (Department of Earth and Environmental Sciences, Chonbuk National University) ;
  • Chung Jae-il (Department of Earth and Environmental Sciences, Chonbuk National University)
  • 전서령 (전북대학교 지구환경과학과) ;
  • 정재일 (전북대학교 지구환경과학과)
  • Published : 2005.08.01

Abstract

The Sr and Pb isotopic ratios and chemical composition were measured for atmospheric bulk deposition samples collected in the Jeonju, Gunsan and Namweon areas over a period of one year. Acidity of deposition ranged pH $4\~7$ with little higher in dry season, and around pH 5.0 in rainy season. The EC and TDS of rainy season was low showing dilution effect, and increased during dry season. Sulfate $(SO_4)\;and\;NO_3$ are atmospheric aerosols largely of anthropogenic origin in winter. Sodium was concentrated in winter deposition, Ca was concentrated in spring to summer deposition. Namweon has lower EC and TDS than those of other, and Jeonju has higher. Namweon was concentrated in $HCO_3$ and Cunsan was concentrated in Cl. Aluminium, Cu, and Zn show good correlation index with TDS, indicating of their origin atmospheric. $^{87}Sr/^{86}Sr$ ratios of bulk deposition ranged from 0.7109 to 0.7128. The isotopic variations are correlated with mixing of isotopic compositions of local soils, road deposit and biogenic aerosol. In order to constrain further the origin of aerosols in rainwater, it will be necessary to collect additional Sr isotopic data for aerosols. Lead isotope ratios for all areas were similar and belonged to Pb isotope ratios of Seoul's aerosols, but little different with Beijing's aerosols. It showing that Pb in the Korea mainly derived from the gasoline combustion, not exclusively from the Beijing.

전북의 전주, 군산, 남원지역에서 주기적으로 채수된 강수(bulk deposition)를 지화학적으로 고찰하고 Sr과 Pb 동위원소의 환경추적인자로서의 적용 여부를 알아보고자 하였다. 강수는 pH $4\~7$의 약산성내지 산성을 띄며, 건기에는 높고, 우기에는 자연산성도 수준인 5.0수준을 유지한다. 강수에 의한 희석작용으로, 우기이후의 강수는 TDS 및 EC도 낮아지나 다시 건기에 들어서면서 상승한다. 겨울철에는 난방연료의 연소에 의해 $SO_4$$NO_3$이 높은 함량을 보이며, 여름철은 $CO_2$가스의 영향으로 탄산농도가 약간 높은 경향을 보인다 양이온은 겨울철에 Na의 함량이 높고, 봄부터 여름철에는 Ca의 함량이 높게 나타난다. 지리산에 인접한 남원이 전반적으로 낮은 EC 및 TDS값을 가지고 인구밀집과 도시화가 심한 전주지역은 대체로 높다. 남원지방은 다량의 수목의 호흡작용에 의한 대기중 이사화탄소의 함량이 높아 여름철 탄산 농도가 타 지역에 비해 높다. 군산지역은 해염의 영향으로 대기중 Cl의 함량이 높다. Al, Cu, Zn은 TDS와 상관계수 0.5이상의 양호한 상관관계를 보여 이들 원소가 미량원소 중 강수의 화학적 성상에 영향을 미치는 원소들 이라고 볼 수 있다. $^{87}Sr/^{86}Sr$ 값은 0.7109-0.7128으로 세 지역 모두 유사하며, 해수보다 다소 높은 값을 보이고 있어 주변의 토양입자, 꽃가루, 기타 인위기원의 에어로졸 등의 영향이 있음을 암시하나 지역 전반에 걸친 자세한 동위원소적 고찰이 있어야만 보다 정확한 해석이 가능할 것으로 생각된다. 강수의 Pb 동위원소 조성도 세 지역 모두 유사하며, 서울 에어로졸의 Pb 동위원소 조성 범위내에 포함되고 북경의 에어로졸 범위에서는 약간 벗어나 있다. 이는 한반도내의 대기 중에 함유되어 있는 Pb은 모두 유사한 기원으로 휘발유의 연소에서 발생하는 것으로 생각되며, 중국으로부터 기원한 Pb의 존재 가능성은 내포하고 있으나 그 기여율은 적을 것으로 보인다.

Keywords

References

  1. 강공언, 신대윤, 김희강 (1999a) 익산지역에서 봄철 강수의 화학성상과 중화능. 대한환경공학회지, v. 21, p. 197-206
  2. 강공언, 오인교, 김희강 (1999b) 익산지역 강수의 계절별산성도와 화학성상. 한국대기환경학회지, v. 15, p. 393-402
  3. 나춘기, 정제일 (1997) 전주시에서 채수된 강수의 화학적조성. 한국대기보전학회지, v. 13, p. 371-381
  4. 오진만, 김득수 (2001) 군산지역 부유분진의 계절적 농도 변화와 화학적 조성에 대한 연구. 한국대기환경학회지, v. 17, p. 475-485
  5. 이민희, 한진숙, 한의정, 신찬기 (1989) 황사현상시 강수의 화학적 성분에 관한 연구. 한국대기보전학회지, v. 5, p. 1-11
  6. 中野孝敎, 橫尾賴子, 田瑞鈴 (1998) 酸性雨硏究におけるストロンチウム, 鉛安定同位體. 分析 v. 10, p. 77-82
  7. Aberg, G. Jacks G. and Hamilton P.J.. (1989) Weathering rates and $^{87}Sr/^{86}Sr$ ratios: an isotopic approach. J. Hydro., v. 109, p.65-78. https://doi.org/10.1016/0022-1694(89)90007-3
  8. Anderson, P., Lofvendahl R. and Aberg G. (1990) Major element chemistry, 2H, 180 and $^{87}Sr/^{86}Sr$ in a snow profile accross Central Scandinavia. Atmos. Envir., v. 24A, p. 2601-2608
  9. Berner-Kay, E. and Berner R.A. (1987) The golobal water cycle. Geochemistry and Environment. Prentice-Hall, 394p
  10. Camarero, L, and Catalan J. (1993) Chemistry of bulk precipitation in the central and eastern Pyrenee, northeast Spain, Atmos. Environ, v. 27A, p. 83-94
  11. Chiaradia, M., Gulson B.L., James M., Jameson C.W. and Johnson D. (1997) Identification of secondary lead sources in the air of an urban environment. Atmos. Environ, v. 31, p. 3511-3521 https://doi.org/10.1016/S1352-2310(97)00218-5
  12. Colin, J.L. (1988) Variabilite des concentrations des especes minerales dans les precipitaiions humides en relation avec l'aerosols atmospherique. Ph.D. Thesis, Univ. Paris VII
  13. Dasch, E.J. (1969) Strontium isotopes in weathering profiles, deep-sea sediments, and sedimentary rocks. Geochim. Cosmochim. Acta, v. 33, p. 1521-1552 https://doi.org/10.1016/0016-7037(69)90153-7
  14. Faure, G. (1986) Principles of Isotope Geology, John Wiley, New York. 589p
  15. Flegal, A.R. and Patterson C.C. (1983) Vertical concentration profiles of lead in the Central Pacific at 15N and 20S. Earth Planet. Sci. Lett., v. 64, p. 19-32 https://doi.org/10.1016/0012-821X(83)90049-3
  16. Gallet, S., Jahn B.M, and Torii M. (1996) Geochemical characterization of the Luochuan Loess-paleosol sequence, China, and paleoclimatic implications. Chem. Geology, v. 133, p. 67-88 https://doi.org/10.1016/S0009-2541(96)00070-8
  17. Gallon, C., Tessier A., Gobeil C, and Beaudin L. (2005) Sources and chronology of atmospheric lead deposition to a Canadian Shield lake; Inferences from Pb isotopes and PAH profiles. Geochim. Cosmochim. Acta, v. 69, p. 3199-3210 https://doi.org/10.1016/j.gca.2005.02.028
  18. Gibbs, R.J. (1970) Mechanisms controlling world water chemistry. Science, v. 170, p. 1088-1090 https://doi.org/10.1126/science.170.3962.1088
  19. Gosz, J.R. and Moore D.I. (1989) Strontium isotope studies of atmospheric inputs to forested watersheds in New Mexico. Biogeochem., v. 8, p. 115-134
  20. Graustein, W.C. (1989) 87Sr/86Sr ratios measure the sources and flow of strontium in terrestrial ecosystems. In Ecological Studies 68. Stable Isotopes in Ecological Research (edited by Rundel EW, Ehleringer, J.R. and Nagy, K.A.). Springer Verlag, New York, p. 491-512
  21. Graustein, W.C. and Armstrong, R.L. (1983) The use of 87Sr/86Sr ratios to measure atmospheric transport into forested watershed. Science, v. 219, p. 298-392
  22. Gulson, B.L., Mizon, K.J., Korsch, M.J. and Howarth, D. (1996) Importance of monitoring family members in establishing sources and pathways of lead in blood, Science total Environment, v. 188, p. 173-182 https://doi.org/10.1016/0048-9697(96)05170-4
  23. Ichikum, M. (1978) Calcite as a source of excess Ca in rainwater. J. Geophys. Res., v. 83, p. 6249-6252 https://doi.org/10.1029/JC083iC12p06249
  24. Jaffrezo, J. L. (1987) Etude du lessivage des aerosols ato-mospheriques par les precipitations en milieu urbain. Ph.D. Thesis, Univ. Paris VH
  25. Jeon, S.R. (2000) Environmental Geochemistry of the Abandoned Dongjin Au-Ag-Cu Mine Area, Korea. Ph.D. Thesis, University of Tsukuba. p. 144
  26. Kanayama, S., Yabuki, S., Yanagisawa, F., and Motoyama, R. (2002) The chemical and strontium isotope composition of atmospheric aerosols over Japan: the contribution of long-range-transported Asian dust (Kosa). Atmos. Envir., v. 36, p. 5159-5175 https://doi.org/10.1016/S1352-2310(02)00587-3
  27. Keene, WC, Pszenny, A.A.E, Galloway, J. and Hawley, M.E. (1986) Sea-salt corrections and interpretation of constituent ratios in marine precipitation. J. Geophys. Res., v. 91, p. 6647-6658 https://doi.org/10.1029/JD091iD06p06647
  28. Liu, C.Q., Masuda, A., Okada, A., Yabuki, S., and Fan, Z.L. (1994) Isotope geochemistry of Quaternary deposits from the arid lands in northern China. Earth and Planetary Science Letters, v. 127, p. 25-38 https://doi.org/10.1016/0012-821X(94)90195-3
  29. Losno, R, Bergametti, G., Carlier, E and Mouvier, G. (1991) Major ions in marine rainwater with attention to sources of alkaline and acidic species. Atmos. Envir., v. 25A, p. 763-770
  30. Mukai, H., Naoki, E, Fuhii, T., Ambe, Y. Sakamoto, K., and Hashimoto, Y. (1993) Characterization of sources of lead in the urban air of asia using ratios of stable lead isotopes. Environ. Sci. Technol., v. 27, p. 1347-1356 https://doi.org/10.1021/es00044a009
  31. Mukai, H., Tanaka, A., Fujii, T., and Nakao, M. (1994) Lead isotope ratios of airborne particulate matter as tracers of long-rang transport of air pollutants around Japan. J. Geophys. Res., v. 99, p. 3717-3726 https://doi.org/10.1029/93JD02917
  32. Murozumi, M., Chow, T.H. and Patterson, C. (1969) Chemical concentrations of pollutant lead aerosols, terrestrial dusts and sea salts in Greenland and Antarctic snow strata. Geochim. Cosmochim. Acta, v. 33, p. 1247-1294 https://doi.org/10.1016/0016-7037(69)90045-3
  33. Negrel, E and Roy, S. (1998) Chemistry of rainwater in the Massif Central (France): a strontium isotope and major element study. Appl. Geochem., v. 13, p. 941-952 https://doi.org/10.1016/S0883-2927(98)00029-8
  34. Negrel, Ph., Allegre, C.J., Dupre, B. and Lewin, E. (1993) Erosion sources determined from inversion of major, trace element ratios and strontium isotopic ratio in river water, thecongo Basin case. Earth Planet. Sci. Lett., 120, 59-76 https://doi.org/10.1016/0012-821X(93)90023-3
  35. Nriagu, J.O. (1979) Global inventory of natural and anthropogenic emissions of trace metals to the atmosphere. Nature, v. 279, p. 409-411 https://doi.org/10.1038/279409a0
  36. Sarin, M.M., Krishnaswami, S., Dillil, K., Somayajulu, B.L. and Moore WS. (1989) Major ion chemistry of the Ganga-brahmaputra river system, weathering processes and fluxes to the bay of Bengal. Geochim. Cosmochim. Acta, v. 53, p. 997-1009 https://doi.org/10.1016/0016-7037(89)90205-6
  37. Saylor, R.D., Butt, K.N., and Peters, L.K. (1992) Chemical characterization of precipitation from a monitoring network in the lower Ohio river valley, Atmos. Environ., v. 26A, p. 1147-1156
  38. Schaule, B.K. and Patterson, C.C. (1983) Perturbations of the natural lead depth profile in the Sargasso Sea by Industrial Lead. In Trace Metals in Seawater (ed. C.S. Wong et al.), p. 487-504. Plenum
  39. Settle, D.M. and Patterson, C.C. (1982) Magnitudes and sources of precipitation and dry deposition fluxes of industrial and natural leads to the North Pacific at Enewetak, J. Geophys. Res., v. 87, p. 8857-8869 https://doi.org/10.1029/JC087iC11p08857
  40. Settle, D.M., Patterson, C.C, Turekian, K.K., and Cochran, J.K. (1982) Lead precipitation fluxes at tropical oceanic sites determined from Pb-210 measurements. J. Geophys. Res., v. 87, p. 1239-1245 https://doi.org/10.1029/JC087iC02p01239
  41. Spokes, L.J., Jickells, T.D., and Lim, B. (1994) Solubilization of aerosol trace metals by cloud processing: A laboratory study. Geochim. Cosmochim. Acta, v. 58, p. 3281-3287 https://doi.org/10.1016/0016-7037(94)90056-6
  42. Stallard, R.F. and Edmond, J.M. (1981) Geochemistry of the Amazon. Precipitation chemistry and the marine contribution to the dissolved load at the time of peak discharge. J. Geophys Res., v. 86, p. 9844-9858 https://doi.org/10.1029/JC086iC10p09844
  43. Suzuki, T. and Tsunogai, S. (1988) Origin of calcium in aerosols over the Western North Pacific. Atmos. Chem., v. 6, p. 363-374 https://doi.org/10.1007/BF00051597
  44. Svensson, A., Biscaye, P., and Grousset, F. (2000) Characterization of late glacial continental dust in the Greenland Ice Core Project ice core. J. Geophys. Res., v. 105(D4), p. 4637-4656 https://doi.org/10.1029/1999JD901093
  45. Wickman, EE. and Aberg, G. (1987) Variations in the $^{87}Sr/^{86}Sr$ ratio in lake waters from Central Sweden. Nordic Hydrology, v. 18, p. 21-32