DOI QR코드

DOI QR Code

Fabrication of Electrospun Titania Nanofiber

전기방사법을 이용한 산화티탄 나노섬유의 제조

  • Park, Sooil (Department of Materials Engineering, Daelim College of Technology) ;
  • Lee, Deuk-Yong (Department of Materials Engineering, Daelim College of Technology) ;
  • Lee, Myung-Hyun (Next Generation Enterprise Group, KICET) ;
  • Lee, Se-Jong (Department of Advanced Materials Engineering, Kyungsung University,) ;
  • Kim, Bae-Yeon (Department of Advanced Materials Engineering, University of Incheon)
  • Published : 2005.08.01

Abstract

$TiO_2$ nanofibers were fabricated by annealing electrospun $TiO_2$/PVP nanofibers for 3 h at $500^{\circ}C$ in air. Size and uniformity of electrospun $TiO_2$ nanofiber diameters were evaluated via XRD and SEM by varying electric field, PVP concentration, Ti tetraisopropoxide concentration and precursor flow rate. Experimental results revealed that the effect of PVP concentration on size and uniformity of electrospun $TiO_2$ nanofiber diameters was most profound, however, the other effects were relatively small. Uniform fibers with no beads were observed for the electrospun anatase titania nanofibers with a diameter of 170 nm.

Keywords

References

  1. S. Iijima, 'Helical Microtubules of Graphitic Carbon,' Nature, 354 56-8 (1991) https://doi.org/10.1038/354056a0
  2. Z. L. Wang, 'Nanostructures of Zinc Oxides.' Materials Today, 26-33 (2004)
  3. S. Bae, S. Lee. S. Cho. and D. Y. Lee, 'Growth of Carbon Nanotubes on Different Catalytic Substrates(in Korean),' J. Kor. Ceram. Soc., 41 [3] 247-52 (2004) https://doi.org/10.4191/KCERS.2004.41.3.247
  4. D. Y. Lee. S. Heo, K. Kim. D. Kim, M. Lee, and S. Lee, ' Electrically Controllable Biomimetic Actuators Made With Multiwalled Carbon Nanotube Loaded Ionomeric Nanocomposites,' Key. Eng. Mater., 284-286 733-36 (2005) https://doi.org/10.4028/www.scientific.net/KEM.284-286.733
  5. D. Y. Lee, M. Lee, K. Kim, S. Heo. B. Kim, and S. Lee. 'Effect of Multiwalled Carbon Nanotube(M-CNT) Loading on M-CNT Distribution Behavior and the Related Electromechanical Properties of the M-CNT Dispersed lonomeric Nanocomposites,' Surf. Coat. Technol., in press
  6. S. Kim, Y. Choi. Y. Song. D. Y. Lee. and S. Lee., 'Influence of Sputtering Parameters on Microstructure and Morpholgy of $TiO_{2}$ Thin Films,' Mater. Lett., 57 [2] 343-48 (2002) https://doi.org/10.1016/S0167-577X(02)00788-7
  7. H. Choi, S. Kim. Y. Song, and D. Y. Lee. 'Photodecomposition and Bactericidal Effects of $TiO_{2}$ Thin Films Prepared by a Magnetron Sputtering,' J. Mater. Sci.. 39 [18] 5695-99 (2004) https://doi.org/10.1023/B:JMSC.0000040078.09843.cb
  8. Y. Song, S. Kim, B. Kim, and D. Y. Lee, 'Hydrophilicity and Bactericidal Effects of $TiO_{2}$ Thin Films Prepared by RF Sputtering,' Mater. Sci. Forum. 449-452 1261-64 (2004)
  9. Y. Chen, Z. Sun. Y. Yang, and Q. Ke, 'Heterogeneous Photocatalytic Oxidation of Polyvinyl Alcohol in Water,' J. Photochem. and Photobiology A: Chem., 142 85-9 (2001) https://doi.org/10.1016/S1010-6030(01)00477-4
  10. H. Fong, I. Chun, and D. H. Reneker, 'Beaded Nanofibers Formed During Electrospinning,' Polymer, 40 4585-92 (1999) https://doi.org/10.1016/S0032-3861(99)00068-3
  11. G. Li, K. Takashima. S. Katsura. and A. Mizuno. 'Electrostatic Assisted Formation of Porous Ceramic Film,' J. Mater. Sci., 29 4067-68 (2004)
  12. X. Wang. C. Drew, S. Lee, K. J. Senecal. J. Kumar, and L. A. Samuelson, 'Electrospun Nanofibrous Membranes for Highly Sensitive Optical Sensors,' Nano Lett., 2 1273-75 (2002) https://doi.org/10.1021/nl020216u
  13. L. T. Cherney, 'Structure of Taylor Cone-Jets: Limit of Low Flow Rates,' J. Fluid Mech. 378 167-96 (1999) https://doi.org/10.1017/S002211209800319X
  14. M. M. Hohman, M. Shin, G. Rutledge, and M. P. Brenner, 'Electrospinning and Electrically Forced Jets. I. Stability Theory,' Phys. Fluids, 13 2201-20 (2001) https://doi.org/10.1063/1.1383791
  15. M. M. Hohman, M. Shin, G Rutledge, and M. P. Brenner, 'Electrospinning and Electrically Forced Jets. II. Applications,' Phys. Fluids, 13 2221-36 (2001) https://doi.org/10.1063/1.1384013
  16. C. Drew, X. Liu, D. Ziegler, X. Wang, F. F. Bruno, J. Whitten, L. A. Samuelson, and J. Kumar, 'Metal Oxide-Coated Polymer Nanofibers,' Nano Lett., 3 143-47 (2003) https://doi.org/10.1021/nl025850m
  17. D. Li and Y. Xia, 'Fabrication of Titania Nanofibers by Electrospinning,' Nano Lett., 3 555-60 (2003) https://doi.org/10.1021/nl034039o
  18. S. J. Kim, K. M. Shin, and S. I. Kim, 'The Effect of Electric Current on the Processing of Nanofibers Formed Poly(2-acrylamido-2-methyl-l-propane Sulfonic Acid),' Scripta Mater. 51 31-5 (2004) https://doi.org/10.1016/j.scriptamat.2004.03.041
  19. R. V. Samatham, 'Submicron Diameter Electrospun Polyacrylonitrile Fibers as Potential Linear Actuator,' pp. 27-38, in Master Thesis, University of Nevada, 2004

Cited by

  1. Manufacture of Inorganic Materials Thin Film Solar Cell using Titanium Dioxide vol.9, pp.10, 2009, https://doi.org/10.5392/JKCA.2009.9.10.451
  2. Chemically Driven Polyacrylonitrile Fibers as a Linear Actuator vol.124-126, pp.1662-9779, 2007, https://doi.org/10.4028/www.scientific.net/SSP.124-126.1197
  3. Elektrospinnen: eine faszinierende Methode zur Präparation ultradünner Fasern vol.119, pp.30, 2007, https://doi.org/10.1002/ange.200604646
  4. Electrospinning: A Fascinating Method for the Preparation of Ultrathin Fibers vol.46, pp.30, 2007, https://doi.org/10.1002/anie.200604646