Isolation and Characterization of a Rhodococcus Species Strain Able to Grow on ortho- and para-Xylene

  • Jang Jung Yeon (Department of Biology, Yonsei University) ;
  • Kim Dockyu (Department of Biology, Yonsei University, Microbial Resources Bank, Microbial Genomics and Applications Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Bae Hyun Won (Department of Biology, Yonsei University) ;
  • Choi Ki Young (Department of Biology, Yonsei University) ;
  • Chae Jong-Chan (Biotechnology Center for Agriculture and the Environment, Cook College, Rutgers University) ;
  • Zylstra Gerben J. (Biotechnology Center for Agriculture and the Environment, Cook College, Rutgers University) ;
  • Kim Young Min (Department of Biology, Yonsei University) ;
  • Kim Eungbin (Department of Biology, Yonsei University)
  • 발행 : 2005.08.01

초록

Rhodococcus sp. strain YU6 was isolated from soil for the ability to grow on o-xylene as the sole carbon and energy source. Unlike most other o-xylene-degrading bacteria, YU6 is able to grow on p-xylene. Numerous growth substrate range experiments, in addition to the ring-cleavage enzyme assay data, suggest that YU6 initially metabolizes 0- and p-xylene by direct aromatic ring oxidation. This leads to the formation of dimethylcatechols, which was further degraded largely through meta-cleavage path-way. The gene encoding meta-cleavage dioxygenase enzyme was PCR cloned from genomic YU6 DNA using previously known gene sequence data from the o-xylene-degrading Rhodococcus sp. strain DK17. Subsequent sequencing of the 918-bp PCR product revealed a $98\%$ identity to the gene, encoding meth-ylcatechol 2,3-dioxygenase from DK17. PFGE analysis followed by Southern hybridization with the catechol 2,3-dioxygenase gene demonstrated that the gene is located on an approximately 560-kb megaplasmid, designated pJY J1

키워드

참고문헌

  1. Altschul, S.F., W. Gish, W. Miller, E.W. Myera, and D.J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215, 403- 410 https://doi.org/10.1016/S0022-2836(05)80360-2
  2. Arenghi, F.L., M. Pinti, E. Galli, and P. Barbieri. 1999. Identification of the Pseudomonas stutzeri OX1 toluene-o-xylene monooxygenase regulatory gene (touR) and of its cognate promoter. Appl. Environ. Microbiol. 65, 4057-4063
  3. Arenghi, F.L., D. Berlanda, E. Galli, G. Sello, and P. Barbieri. 2001. Organization and regulation of meta-cleavage pathway genes for toluene and o-xylene derivative degradation in Pseudomonas stutzeri OX1. Appl. Environ. Microbiol. 67, 3304-3308 https://doi.org/10.1128/AEM.67.7.3304-3308.2001
  4. Asturias, J.A. and K.N. Timmis. 1993. Three different 2,3-dihydroxy biphenyl-1,2-dioxygenase genes in the gram-positive polychlorobiphenyl-degrading bacterium Rhodococcus globerulus P6. J. Bacteriol. 175, 4631-4640 https://doi.org/10.1128/jb.175.15.4631-4640.1993
  5. Baggi, G., P. Barbieri, E. Galli, and S. Tollari. 1987. Isolation of a Pseudomonas stutzeri strain that degrades o-xylene. Appl. Environ. Microbiol. 64, 2473-2478
  6. Barbieri, P., L. Palladino, P. Di Gennaro, and E. Galli. 1993. Alternative pathways for o-xylene or m-xylene and p-xylene degradation in a Pseudomonas stutzeri strain. Biodegradation 4, 71-80 https://doi.org/10.1007/BF00702323
  7. Bayly, R.C., S. Dagley, and D.T. Gibson. 1966. The metabolism of cresols by species of Pseudomonas. Biochem. J. 101, 293-301 https://doi.org/10.1042/bj1010293
  8. Bertoni, G., F. Bolognese, E. Galli, and P. Barbieri. 1996. Cloning of the genes for and characterization of the early stages of toluene and o-xylene catabolism in Pseudomonas stutzeri OX1. Appl. Environ. Microbiol. 62, 3704-3711
  9. Bertoni, G., M. Martino, E. Galli, and P. Barbieri. 1998. Analysis of the gene cluster encoding toluene/o-xylene monooxygenase from Pseudomonas stutzeri OX1. Appl. Environ. Microbiol. 64, 3626-3632
  10. Bickerdike, S.R., R.A. Holt, and G.M. Stephens. 1997. Evidence for metabolism of o-xylene by simultaneous ring and methyl group oxidation in a new soil isolate. Microbiology 143, 2321-2329 https://doi.org/10.1099/00221287-143-7-2321
  11. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein-dye binding. Anal. Biochem. 72, 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  12. Broderick, J.B. 1999. Catechol dioxygenases. Essays Biochem. 34, 173-189 https://doi.org/10.1042/bse0340173
  13. Burlage, R.S., S.W. Hooper, and G.S. Sayler. 1989. The TOL (pWW0) catabolic plasmid. Appl. Environ. Microbiol. 55, 1323-1328
  14. Choi, K.Y., D. Kim, S.-C. Koh, J.-S. So, J.-S. Kim, and E. Kim. 2004. Molecular cloning and identification of a novel oxygenase gene specifically induced during the growth of Rhodococcus sp. strain T104 on limonene. J. Microbiol. 42, 160-162
  15. Davis, R.S., F.S. Hossler, and R.W. Stone. 1968. Metabolism of pand m-xylene by species of Pseudomonas. Can. J. Microbiol. 14, 1005-1009 https://doi.org/10.1139/m68-166
  16. Davey, J.F. and D.T. Gibson. 1974. Bacterial metabolism of paraand meta-xylene: oxidation of a methyl substituent. J. Bacteriol. 119, 923-929
  17. Di Lecce, C., M. Accarino, F. Bolognese, E. Galli, and P. Barbier. 1997. Isolation and metabolic characterization of a Pseudomonas stutzeri mutant able to grow on the three isomers of xylene. Appl. Environ. Microbiol. 63, 3279-3281
  18. Dorn, E. and H.J. Knackmuss. 1978. Chemical structure and biodegradability of halogenated aromatic compounds: Substituted effects on 1,2-dioxygenation of catechol. Biochem. J. 174, 85- 94 https://doi.org/10.1042/bj1740085
  19. Gibson, D.T., V. Mahadevan, and J.F. Davey. 1974. Bacterial metabolism of p- and m-xylene: Oxidation of the aromatic ring. J. Bacteriol. 119, 930-936
  20. Johnson, J.L. 1994. Similarity analyses of rRNAs, p. 683-700. In P. Gerhardt, R. G. E. Murray, W. A. Wood, and N. R. Krieg (eds.), Methods for general and molecular bacteriology. American Society for Microbiology, Washington, D.C
  21. Jung, Y.-H. J.-O. Ka, C.-I. Cheon, M.-S. Lee, E.-S. Song, S.-Y. Choi, D. Cho, S.-H. Choi, K.-S. Ha, Y.M. Park, J.-S. Choi, and K.-H. Min. 2003. Cloning and sequence analysis of two catechol- degrading gene clusters from a phenol-utilizing bacterium Pseudomonas putida SM25. J. Microbiol. 41, 102-108
  22. Kim, D., Y.-S. Kim, J.W. Jung, G.J. Zylstra, Y.M. Kim, S.-K. Kim, and E. Kim. 2003. Regioselective oxidation of xylene isomers by Rhodococcus sp. strain DK17. FEMS Microbiol. 223, 211- 214 https://doi.org/10.1016/S0378-1097(03)00379-3
  23. Kim, D., Y.-S. Kim, S.-K. Kim, S.W. Kim, G.J. Zylstra, Y.M. Kim, and E. Kim. 2002. Monocyclic aromatic hydrocarbon degradation by Rhodococcus sp. strain DK17. Appl. Environ. Microbiol. 68, 3270-3278 https://doi.org/10.1128/AEM.68.7.3270-3278.2002
  24. Kim, D., J.-C. Chae, G.J. Zylstra, Y.-S. Kim, S.-K. Kim, M.H. Nam, Y.M. Kim, and E. Kim. 2004. Identification of a novel dioxygenase involved in metabolism of o-xylene, toluene, and ethylbenzene by Rhodococcus sp. strain DK17. Appl. Environ. Microbiol. 70, 7086-7092 https://doi.org/10.1128/AEM.70.12.7086-7092.2004
  25. Kim, D., J.-C. Chae, G.J. Zylstra, H.-Y. Sohn, G.-S. Kwon, and E. Kim. 2005a. Identification of two-component regulatory genes involved in o-xylene degradation by Rhodococcus sp. strain DK17. J. Microbiol. 43, 49-53
  26. Kim, D., J.-C. Chae, J.Y. Jang, G.J. Zylstra, Y.M. Kim, B.S. Kang, and E. Kim. 2005b. Functional characterization and molecular modeling of methylcatechol 2,3-dioxygenase from o-xylenedegrading Rhodococcus sp. strain DK17. Biochem. Biophys. Res. Commun. 326, 880-886 https://doi.org/10.1016/j.bbrc.2004.11.123
  27. Masai, E., A. Yamada, J.M. Healy, T. Hatta, K. Kimbara, M. Fukuda, and K. Yano. 1995. Characterization of biphenyl catabolic genes of gram-positive polychlorinated biphenyl degrader Rhodococcus sp. strain RHA1. Appl. Environ. Microbiol. 61, 2079-2085
  28. Pisabarro, A., A. Correia, and J.F. Martin. 1998. Pulsed-field gel electrophoresis analysis of the genome of Rhodococcus fascians: Genome size and linear and circular replicon composition in virulent and avirulent strains. Curr. Microbiol. 36, 302- 308 https://doi.org/10.1007/s002849900314
  29. Sazinsky, M.H., J. Bard, A. Di Donato, and S.J. Lippard. 2004. Crystal structure of the toluene/o-xylene monooxygenase hydroxylase from Pseudomonas stutzeri OX1. Insight into the substrate specificity, substrate channeling, and active site tuning of multicomponent monooxygenases. J. Biol. Chem. 279, 30600-30610 https://doi.org/10.1074/jbc.M400710200
  30. Stanier, R.Y., N.J. Palleroni, and M. Duodoroff. 1966. The aerobic pseudomonads: a taxonomic study. J. Gen. Microbiol. 43, 159- 271 https://doi.org/10.1099/00221287-43-2-159
  31. Stecker, C., A. Johann, C. Herzberg, B. Averhoff, and G. Gottschalk. 2003. Complete nucleotide sequence and genetic organization of the 210-kilobase linear plasmid of Rhodococcus erythropolis BD2. J. Bacteriol. 185, 5269-5274 https://doi.org/10.1128/JB.185.17.5269-5274.2003
  32. Worsey, M.J. and P.A. Williams. 1975. Metabolism of toluene and xylene by Pseudomonas putida (arvilla) mt-2: evidence for a new function of the TOL plasmid. J. Bacteriol. 124, 7-13
  33. Zylstra, G.J. and D.T. Gibson. 1989. Toluene degradation by Pseudomonas putida F1: nucleotide sequence of the todC1C2BADE genes and their expression in Escherichia coli. J. Biol. Chem. 264, 14940-14946