Geochemical and Structural Geological Approach for clarifying Stratigraphy of Quartzite in the Paju Area: an Application of Rare Earth Element and Nd Isotope in Stratigraphy

파주지역 규암의 층서관계 규명을 위한 지구화학적-구조지질학적 연구: 층서규명을 위한 희토류원소 분포도와 Nd 동위원소의 응용

  • Koh Hee Jae (Groundwater and Geothermal Resources Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Lee Seung-Gu (Geological and Information Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Lee Byung-Joo (Groundwater and Geothermal Resources Division, Korea Institute of Geoscience and Mineral Resources)
  • 고희재 (한국지질자원연구원 지질기반정보부) ;
  • 이승구 (한국지질자원연구원 지하수지열연구부) ;
  • 이병주 (한국지질자원연구원 지질기반정보부)
  • Published : 2005.06.01

Abstract

The Precambrian quartzite and calc-schist layers experienced multi-1310ing events are distributed along the two kinds of U-shaped 1310 (Fold I and II) with $N10^{\circ}E-directed$ fo1d axis in Wollong-myeon, Gwangtan-myeon, Jori-myeon of Paju city, the northeastern part of Gyeonggido. Occurrence of 10 layers of quartzite and 4 layers of calc-schist is not clear whether quartzite and schist layers were deposited sequentially each other or one to two layers of quartzite and schist were distributed repeatedly by isoclinal folding and thrusting, because of lack of sedimentary structures. In this paper, we tried to clarify the correlative relationship among the quartzite beds which are distributed along the U-shaped folds using geochemical tools such as rare earth element (REE) patterns and Nd isotope ratio. Quartzites have characteristics of LREE-flattened, HREE- slightly depleted patterns. They also show Ce negative anomaly whereas there are no Eu anomalies. As a result, quartzite beds occurred along the bilateral sides of fold axis show very similar REE patterns from outer side to inner side of 1314. The Nd model age of quartzite layers shows a trend that the inner part of fold is younger than the outer part of it. Such geochemical characteristics suggest that bilateral quartzite beds occurred along the fold axis were derived from the cogenetic source materials. The REE patterns and trace element geochemistry of mica schist intercalated within quartzite indicate that the quartzite and mica schist may be derived from different source materials. Our results suggest that REE and Nd isotope geochemistries may be very useful in clarifying the relationship of sedimentary deposits which do not show stratigraphical and structural connections in the field.

경기도 파주시 월롱면, 광탄면, 조리면 지역에는 다중 습곡 작용을 받은 선캠브리아기 암석이 $N10^{\circ}E$ 방향의 습곡축을 갖는 2조의 U형 습곡구조(습곡 I과 II)를 따라서 분포한다. 습곡구조를 따라 분포하는 10여 매의 규암과 4 매의 석회질 편암은 기원 퇴적암이 순차적으로 반복 퇴적된 것인지, 혹은 $1\~2$의 동일한 규암과 석회질 편암이 등사습곡작용에 의하여 반복 분포되는 것인지에 관한 직접적인 증거(퇴적구조)는 발견되지 않는다. 이 논문에서는 U형 습곡이 습곡축을 중심으로 동측과 서측의 양 방향에 분포하는 규암의 상호 연결성을 희토류원소 분포도와 Nd 동위원소비와 같은 지구화학적 방법으로 대비하였다. 습곡구조를 형성하는 규암의 희토류원소 분포도 특성은 경희토류는 편평하고 중희토류가 약간 결핍되어 있다. 또한 Ce의 부(-)의 이상을 보여주는 반면에 Eu의 이상은 거의 존재하지 않는다. 희토류원소 분포도 양상은 습곡축을 중심으로 동서 양 방향의 규암에 있어서 매우 유사하게 나타났다 이들 규암의 Nd모델연대도 습곡축의 양쪽 외 곽부에서 내부로 들어오면서 젊어지는 경향을 보여준다. 이와 같이 유사한 희토류원소 분포특성과 Nd 모델연대는 연구지역내에서 습곡축을 중심으로 동측과 서측에 분포하는 규암이 동일한 기원물질로부터 유래되었음을 시사해주는 것으로서, 층서적 및 구조지질학적 연결과 대비되는 것으로 볼 수 있다. 규암과 호층을 형성하는 운모편암의 희토류원소 분포도 및 Sr, Ba, Eu, Rb과 같은 미량원소의 상관관계도는 운모편암이 규암의 근원 물질과는 다를 가능성을 지시한다. 이는 변성작용, 풍화작용과 같은 지질현상에 의해서도 전체적인 분포 특성이 거의 영향을 받지 않는 희토류원소 지구화학과, 지각내 체류시간을 지시해주는 Nd 동위원소 지구화학이 서로 떨어져 분포하는 퇴적층의 연결성을 추적하는데 유용하게 활용될 수 있음을 지시해준다.

Keywords

References

  1. 고희재, 이병주, 이승렬, 2004, 고양 도폭 지질조사보고서 (1:50,000), 한국지질자원연구원, 63 p
  2. 김건한, 음철헌, 2004, 유도결합 플라즈마 질량분광법(ICPMS)에 의한 암석표준물질 중의 Lanthanoids, Y, Th, U 분석. 한국지질자원연구원 논문집, 8. 43-53
  3. Awwiller, D.N. and Mack, L.E., 1991, Diagenetic modification of Sm-Nd model ages in Tertiary sandstones and shales, Texas Golf Coast. Geology 15, 893-895
  4. Cheong, C.S. and Chang, H.W., 1997, Sr, Nd and Pb isotope systematics of granitic rocks in the central Ogcheon Belt, Korea. Geochem. Jour. 31, 17-36 https://doi.org/10.2343/geochemj.31.17
  5. Chough, S.K., Kwon, S.-T., Ree, J.-H. and Choi, D.K., 2000, Tectonic and sedimentary evolution of the Korean Peninsula: a review and new view. Earth-Sci. Rev. 52, 175-235 https://doi.org/10.1016/S0012-8252(00)00029-5
  6. Cullers, R.L., Chaudhuri, S., Kilbane, N. and Koch, R., 1979, Rare earths in size fractions and sedimentary rocks of Pennsylvanian-Permian age from the mid-continent of the U.S.A. Geochim. Cosmochim. Acta, 43, 1285-1302 https://doi.org/10.1016/0016-7037(79)90119-4
  7. Cullers, R.L., Barrett, T., Carlson, R. and Robinson, B., 1987, Rare earth element and mineralogic Changes in Holocene soil and stream sediment: A case study in the West Mountains, Colorado, USA. Chem. Geol. 63, 275-297 https://doi.org/10.1016/0009-2541(87)90167-7
  8. Cullers, R.L., Basu, A. and Suttner, L.J., 1989, Geochemical signature of provenence in sand size material in soils and stream sediment near the Tobacco Root Batholith, Montana, U.S.A. Chem. Geol. 70, 335-348 https://doi.org/10.1016/0009-2541(88)90123-4
  9. Elderfield, H., Upstill-Goddard, R., Sholkovitz, E.R., 1990, The rare earth elements in rivers, estuaries and coastal seas and their significance to the composition of ocean waters. Geochim. Cosmochim. Acta. 54, 971-991 https://doi.org/10.1016/0016-7037(90)90432-K
  10. Goldstein, S.L., O'nions, R. K. and Hamilton, P.J., 1984, A Sm-Nd isotopic study of atmospheric dusts and particulates from major river systems. Earth Planet. Sci. Lett. 87, 249-265 https://doi.org/10.1016/0012-821X(88)90013-1
  11. Johannesson, K.H., Stetzenbach, K.J., Hodge, V.F., Lyons, W.B., 1996, Rare earth element complexation behaviour in circumneutral pH groundwaters: Assessing the role of carbonate and phosphate ions. Earth Planet. Sci. Lett. 139, 305-319 https://doi.org/10.1016/0012-821X(96)00016-7
  12. Johannesson, K.H., Stetzenbach, K.J., Hodge, V.F., 1997, Rare Earth Elements as geochemical tracers of regional groundwater mixing. Geochim. Cosmochim. Acta, 61, 3605-3618 https://doi.org/10.1016/S0016-7037(97)00177-4
  13. Lee, S.G., Masuda, A. and Kim, H.S., 1994, An early Proterozoic leuco-granitic gneiss with the REE tetrad phenomenon. Chem. Geol. 114, 59-67 https://doi.org/10.1016/0009-2541(94)90041-8
  14. Lee, S.G., Lee, D.H., Kim, Y., Chae, B.G., Kim, W.Y. and Woo, N.C., 2003, Rare earth elements as an indicator of groundwater environment changes in a fractured rock system: Evidence from fractured-filling calcite. Appl. Geochem. 18, 135-143 https://doi.org/10.1016/S0883-2927(02)00071-9
  15. McLennan, S.M., 1989, Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes. In: Lipin, B.R. and McKay, G.A. (eds.), Geochemistry and mineralogy of rare earth elements. Minerlogical Society of America, 169-200
  16. Nance, W.B. and Taylor, S.R., 1976, Rare earth element patterns and crustal evolution-I. Australian post-Archean sedimentary rocks. Geochim. Cosmochim. Acta 40, 1539-1551 https://doi.org/10.1016/0016-7037(76)90093-4
  17. Nelson, B.K. and Depaolo, D.J., 1988, Application of Sm-Nd and Rb-Sr isotope systematics to studies of provenances and basin analysis. Jour. Sed. Petrol. 58, 348-357
  18. Piper, D.Z., 1985, Rare earth elements in the sedimentary cycle: a summary. Chem. Geol. 14, 285-304 https://doi.org/10.1016/0009-2541(74)90066-7
  19. Shimizu, H., Kunimaru, T., Yoneda, S. and Adachi, M., 2001, Sources and depositional environments of some Permian and Triassic cherts: significance of Rb-Sr and Sm-Nd isotopic and REE abundance data. Jour. Geol. 109, 105-125 https://doi.org/10.1086/317961
  20. Sholkovitz, E.R., 1992, Chemical evolution of rare earth elements: Fractionation between colloidal and solution phases of filtered river water. Earth Planet. Sci. Lett. 114, 77-84 https://doi.org/10.1016/0012-821X(92)90152-L
  21. Sholkovitz, E.R., Szymcazk, R., 2000, The estuarine chemistry of rare earth elements: Comparison of he Amazon, Fly, Sepik and the Golf of Papua systems. Earth Planet. Sci. Lett. 179, 299-309 https://doi.org/10.1016/S0012-821X(00)00112-6
  22. Takahashi, Y., Shimizu, H., Kagi, H., Yoshida, H., Usui, A. and Nomura, M., 2000, A new method for the determination of CeIII/CeIV ratios in geological materials: application for weathering, sedimentary and diagenetic processes. Earth Planet. Sci. Lett. 182, 201-207 https://doi.org/10.1016/S0012-821X(00)00250-8
  23. Taylor, S.R. and McLennan, S.M., 1985, The Continental Crust: Its Composition and Evolution. Blackwell, Oxford, 312 p
  24. Yang, S.Y. Jung H.S., Choi, M. S., Li, C.X., 2002, The rare earth element compositions of the Changjiang (Yangtze) and Huanghe (Yellow) river sediements. Earth Planet. Sci. Lett. 201, 407-419 https://doi.org/10.1016/S0012-821X(02)00715-X