Neovastat(AE-941) inhibits the airway inflammation and hyperresponsiveness in a murine model of asthma

  • Lee, Sook-Young (Department of Internal Medicine, College of Medicine, The Catholic University of Korea) ;
  • Paik, Soon-Young (Department of Microbiology, College of Medicine, The Catholic University of Korea) ;
  • Chung, Su-Mi (Department of Radiation Oncology, College of Medicine, The Catholic University of Korea)
  • Published : 2005.02.28

Abstract

Matrix metalloproteinase (MMP)-9 plays an important role in the pathogenesis of bronchial asthma. Neovastat, having significant antitumor and antimetastatic properties, is classified as a naturally occurring multifunctional antiangiogenic agent. We evaluated the therapeutic effect of Neovastat on airway inflammation in a mouse model of asthma. BALB/c mice were immunized subcutaneously with ovalbumin (OVA) on days 0, 7, 14, and 21 and challenged with inhaled OVA on days 26, 29, and 31. Neovastat was administrated by gavage (5 mg/kg body weight) three times with 12 h intervals, beginning 30 min before OVA inhalation. On day 32, mice were challenged with inhaled methacholine, and enhanced pause (Penh) was measured as an index of airway hyperresponsiveness. The severity of airway inflammation was determined by differential cell count of bronchoalveolar lavage (BAL) fluid. The MMP-9 concentration in BAL fluid samples was measured by ELISA, and MMP-9 activity was measured by zymography. The untreated asthma group showed an increased inflammatory cell count in BAL fluid and Penh value compared with the normal control group. Mice treated with Neovastat had significantly reduced Penh values and inflammatory cell counts in BAL fluid compared with untreated asthmatic mice. Furthermore, mice treated with Neovastat showed significantly reduced MMP-9 concentrations and activity in BAL fluid. These results demonstrate that Neovastat might have new therapeutic potential for airway asthmatic inflammation.

Keywords

References

  1. Adcock, I.M. 1996. Steroid resistance in asthma. Molecular mechanisms. Am. J. Respir. Crit. Care Med. 154, S58-61 https://doi.org/10.1164/ajrccm/154.2_Pt_2.S58
  2. Beliveau, R., D. Gingras, E.A. Kruger, S. Lamy, P. Sirois, B. Simard, M.G. Sirois, L. Tranqui, F. Baffert, E. Beaulieu, V. Dimitriadou, M.C. Pepin, F. Courjal, I. Ricard, P. Poyet, P. Falardeau, W.D. Figg, and E. Dupont. 2002. The antiangiogenic agent neovastat (AE-941) inhibits vascular endothelial growth factor-mediated biological effects. Clin. Cancer Res. 8, 1242-1250
  3. Boivin, D., S. Gendron, Beaulieu, D. Gingras, and R. Beliveau. 2002. The Antiangiogenic Agent Neovastat (${\AE}$-941) Induces Endothelial Cell Apoptosis. Molecular Cancer Therapeutics. 1, 795-802
  4. Castronovo, V., V. Dimitriadou, P. Savard, M. Riviere, and E. Dupont. 1999. Cartilage as a source of natural inhibitors of angiogenesis. Antiangiogenic Agents in Cancer Therapy, p. 175-83. Humana Press, Totowa, New Jersey
  5. Cho, J.Y., M. Miller, K.J. Baek, G. W. Han, J. Nayar, M. Rodriguez, S.Y. Lee, K. McElwain, S. McElwain, E. Raz, and D.H. Broide. 2004. Immunostimulatory DNA Inhibits Transforming Growth Factor-$\beta$ Expression and Airway Remodeling. Am. J. Respir. Cell Mol. Biol. 30, 651-661 https://doi.org/10.1165/rcmb.2003-0066OC
  6. Delcaux, C., C. Delacourt, M.P. d'Ortho, V. Boyer, C. Lafuma, and A. Harf. 1996. Role of gelatinase B and elastase in human polymorphonuclear neutrohil migration across basement membrane. Am. J. Respir. Cell Mol. Biol. 14, 288-295 https://doi.org/10.1165/ajrcmb.14.3.8845180
  7. Dunnill, M.S. 1960. The pathology of asthma with special reference to changes in the bronchial mucosa. J. Clin. Patho. 13, 27-33 https://doi.org/10.1136/jcp.13.1.27
  8. Falardeau, P., P. Champagne, P. Poyet, C. Hariton, and E, Dupont. 2001. ${\AE}$-941 (Neovastat), a naturally occurring multifunctional anti-angiogenic product in Phase clinical trials. Semin. Oncol. 28, 620-625
  9. Gingras, D., A. Renaud, N. Mousseau, E. Beaulieu, Z. Kachra, and R. Beliveau. 2001. Matrix proteinase Inhibition by ${\AE}$-941, a multifunctional antiangiogenic compound. Anticancer Res. 21, 145-155
  10. Gingras, D., G. Batist, and R. Beliveau. 2001. ${\AE}$-941 (Neovastat$^{\circledR}$): A novel multifunctional antiangiogenic compound. Expert Rev. Anticancer Ther. 1, 341-347 https://doi.org/10.1586/14737140.1.3.341
  11. Jonathan, P.A. and T.H. Lee. 1992. The pathobiology of bronchial asthma. Adv. Immunol. 51, 323-329 https://doi.org/10.1016/S0065-2776(08)60491-5
  12. Kelly, E.A. and N.N. Jarjour. 2003. Role of matrix metalloproteinases in asthma. Current Opinion in Pulmonary Medicine. 9, 28-33 https://doi.org/10.1097/00063198-200301000-00005
  13. Kumagai, K., I. Ohno, S. Okada, Y. Ohkawara, S.K. uzuki, T. Shinya, H. Nagase, K. Iwata, and S.K. hirato. 1999. Inhibition of matrix metalloproteinases prevents allergen-induced airway inflammation in a murine model of asthma. J. Immunol. 162, 4212-4219
  14. Lee, Y.C., C.H. Song, H.B. Lee, J.L. Oh, Y.K. Rhee, H.S. Park, and G.Y. Koh. 2001. A murine model of toluene diisocyanate-induced asthma can be treated with matrix metalloproteinase inhibitor. J. Allergy Clin. Immunol. 108, 1021-1026 https://doi.org/10.1067/mai.2001.120132
  15. Lee, K.S., S.M. Jin, H.J. Kim, and Y.C. Lee. 2003. Matrix metalloproteinase inhibitor regulates inflammatory cell migration by reducing ICAM-1 and VCAM-1 expression in a murine model of toluene diisocyanate-induced asthma. J. Allergy Clin. Immunol. 111, 1278-1284 https://doi.org/10.1067/mai.2003.1501
  16. Leppert, D., E. Waubant, R. Galardy, N.W. Bunnett, and S.L. Hauser. 1995. T cell gelatinases mediate basement membrane transmigration in vitro. J. Immunol. 154, 4379-4389
  17. Li, X. and J.W. Wilson. 1997. Increased vascularity of the bronchial mucosa in mild asthma. Am. J. Respir. Crit. Card. Med. 156, 229-233 https://doi.org/10.1164/ajrccm.156.1.9607066
  18. Lukacs, N.W. 2000. Migration of helper T-lymphocyte subsets into inflamed tissues. J. Allergy Clin. Immunol. 106, 264-269 https://doi.org/10.1067/mai.2000.110160
  19. Mautino, G., N. Oliver, P. chanez, J. Bousquet, and F. Capony. 1997. Increased release of matrix metalloproteinase-9 in bronchoalveolar lavage fluid and by alveolar macrophgages of asthmatics. Am. J. Respir. Cell Mol. Biol. 17, 583-591 https://doi.org/10.1165/ajrcmb.17.5.2562
  20. Nagase, H. 1997. Activation mechanisms of matrix metalloproteinases. Biol. Chem. 378, 151-160
  21. Okada, S., H. Kita, T.J. George, G.J. Gleich, and K.M. Leiferman. 1997. Migration of eosinophil through basement membrane components in vitro:role of matrix metalloproteinase-9. Am. J. Respir. Cell Mol. Biol. 17, 519-528 https://doi.org/10.1165/ajrcmb.17.4.2877
  22. Stetler-Stevenson, W.G., H.C. Krutzsch, and L.A. Liotta. 1989. Tissue inhibitor of metalloproteinase (TIMP-2): A new member of the metalloproteinase family. J. Biol Chem. 264, 17374-17378
  23. Sternlicht, M.D. and Z. Werb. 2001. How Matrix Metalloproteinases Regulate Cell Behavior. Ann. Rev. Cell Dev. Biol. 17, 463-516 https://doi.org/10.1146/annurev.cellbio.17.1.463
  24. Stricklin, G. and H. Welgus. 1983. Human skin fibroblasts collagenase inhibitor : purification and biochemical characterization. J. Biol. Chem. 258, 12252-12258
  25. Yang, H., S. Han, H. Kim, Y.M. Choi, K.J. Hwang, H.C. Kwon, S.K. Kim, and D.J. Cho. 2002. Expression of integrines, cyclooxygenases and matrix metalloproteinases in threedimensional human endometrial cell culture system. Exp. Mol. Med. 34, 75-82 https://doi.org/10.1038/emm.2002.11
  26. Van Eerdewegh, P., R.D. Little, and J. Dupuis. 2002. Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness. Nature 418, 426-430 https://doi.org/10.1038/nature00878
  27. Warner, J.A., P. Julius, W. Luttmann, and C. Kroegel. 1997. Matrix metalloproteinases in bronchoalveolar lavage fluid following antigen challenge. Int. Arch. Allergy Immunol. 113, 318-320 https://doi.org/10.1159/000237587