Reaction Mechanism of Vanadium Haloperoxidase and Marine Natural Products

Vanadium Haloperoxidase의 구조와 작용 메커니즘과 해양천연물질

  • Han, Jae-Hong (Metalloenzyme Research Group, BET Research Institute and Department of Biotechnology)
  • 한재홍 (중앙대학교 생명공학과, 금속효소 연구그룹, 생명환경 연구원)
  • Published : 2005.12.31

Abstract

Marine natural products with various bioactivities are featured with similar structure to the common secondary metabolites and generally modified by halogenides, such as chloride, bromide, and iodide ions. Vanadium haloperoxidase is a key enzyme for the production of marine natural products and a metalloenzyme which requires a cofactor of vanadate. This review will cover isolation of vanadium haloperoxidase and the protein structures, as well as reaction mechanism of the metalloenzyme. Finally, reactivity of vanadium haloperoxidase and the biosynthesis of the secondary metabolites of indole, terpenoids, and acetogenins will be described.

다양한 생리활성을 가지는 marine natural products는 일반적인 secondary metabolites와 유사한 구조를 가지는데, 염소, 브롬, 요오드의 할로겐 원소에 의해 수식이 되어있는 것이 일반적이다. Vanadium haloperoxidase는 이러한 marine natural products의 생산에 중요한 효소로 vanadate를 조효소로 하는 금속효소이다. 본 리뷰에서는 vanadium haloperoxidase의 분리와 단백질 구조를 살펴보고, 이 금속효소의 작용기작에 대해서 설명할 것이다. 마지막으로, vanadium haloperoxidase의 반응성과 secondary metabolites 중 indole, terpenoids, acetogenins의 생합성 예를 살펴볼 것이다.

Keywords

References

  1. RCSB Protein Data Bank; http://www.rcsb.org/ pdb/
  2. Lippard, S. J. and Berg, J. M., 'Principles of Bioinorganic Chemistry' pp. 283-347. University Science Books, California (1994)
  3. Littlechild, J., Curr. Opin. Chem. BioI., 3, 28-34 (1999) https://doi.org/10.1016/S1367-5931(99)80006-4
  4. Yeh, E., Garneau, S. and Walsh, C. T., Proc. Nat 'I. Acad. Sci. USA, 102, 3960-3965 (2005)
  5. ViIter, H., Phytochemistry, 23, 1387-1390 (1984) https://doi.org/10.1016/S0031-9422(00)80471-9
  6. Ohsawa, N., Ogata, Y., Okada, N. and Itoh, N., Phytochemistry, 58, 683-692 (2001) https://doi.org/10.1016/S0031-9422(01)00259-X
  7. De Boer, E., Boon, K. and Wever, R., Biochemistry, 27, 1629-1635 (1988) https://doi.org/10.1021/bi00405a036
  8. Hormes, J., Kuetgens, U., Chauvistre, R., Schreiber, W., Anders, N., Vilter, H., Rehder, D. and Weidemann, C., Biochim. Biophys. Acta, 956, 293-299 (1988) https://doi.org/10.1016/0167-4838(88)90146-X
  9. Renirie, R., Rierlot, C., Aubry, J.-M., Hartog, A. F., Schoemaker, H. E., Alsters, P. L. and Wever, R., Adv. Synth. Catal., 345, 849-858 (2003) https://doi.org/10.1002/adsc.200303008
  10. Wever, R., Plat, H. and de Boer, E., Biochim. Biophys. Acta, 830, 181-186 (1985) https://doi.org/10.1016/0167-4838(85)90026-3
  11. Rorrer, G. L., Tucker, M. P., Cheney, D. P. and Maliakal, S., Biotechnol. Bioeng., 74, 389-395 (2001) https://doi.org/10.1002/bit.1129
  12. Itoh, N., Izumi, Y. and Yamada, H., Biochem. Biophys. Res. Comm., 131, 428-435 (1985) https://doi.org/10.1016/0006-291X(85)91820-0
  13. Sheffield, D. J., Harry, T. R., Smith, A. J. and Rogers, L. J., Phytochemistry, 32, 21-26 (1993)
  14. Almeida, M., Filipe, S., Humanes, M., Maia, M. F., Melo, R., Severino, N., da Silva, J. A. L., Frausto da Silva, J. J. R. and Wever, R., Phytochemistry, 57, 633-642 (2001) https://doi.org/10.1016/S0031-9422(01)00094-2
  15. Littlechild, J. and Garcia-Rodriguez, E., Coord. Chem. Rev., 237, 65-76 (2003)
  16. Isupov, M. N., Dalby, A. R., Brindley, A. A., Izumi, Y., Tanabe, T., Murshudov, G N. and Littlechild, J. A., J. Mol. Biol., 299, 1035-1049 (2000) https://doi.org/10.1006/jmbi.2000.3806
  17. Cater, J. N., Beatty, K. E., Simpson, M. T. and Butler, A., J. Inorg. Biochem., 91, 59-69 (2002) https://doi.org/10.1016/S0162-0134(02)00400-2
  18. Tanaka, N., Hasan, Z. and Wever, R., Inorg. Chim. Acta, 356, 288-296 (2003) https://doi.org/10.1016/S0020-1693(03)00476-6
  19. Hemrika, W., Renirie, R., Macedo-Ribeiro, S., Messerschmidt, A. and Wever, R., J. Biol. Chem., 274, 23820-23827 (1999) https://doi.org/10.1074/jbc.274.34.23820
  20. Casny, M., Rehder, D., Scmidt, H., ViIter, H. and Conte, V., J. Inorg. Biochem., 80, 157-160 (2000) https://doi.org/10.1016/S0162-0134(00)00024-6
  21. Dau, H., Dittmer, J., Epple, M., Hanss, J., Kiss, E., Rehder, D., Schulzke, C. and Vilter, H., FEBS Lett. 237-240 (1999)
  22. Feiters, M. C., Leblanc, G, Kupper, F. C., Meyer-Klaucke, W., Michel, G. and Potin, P., J. Am. Chem. Soc., 127, 15340-15341 (2005) https://doi.org/10.1021/ja053416r
  23. Soedjak, H. S., Walker, J. V. and Butler, A., Biochemistry, 34, '12689-12696 (1995) https://doi.org/10.1021/bi00039a027
  24. Carter-Franklin, J. N. and Butler, A., J. Am. Chem. Soc., 126, 15060-15066 (2004) and references therein https://doi.org/10.1021/ja047925p
  25. Martinez, J. S., Carroll, G. L., Tschirret-Guth, R. A., Altenhoff, G, Little, R. D. and Butler, A., J. Am. Chem. Soc., 123, 3289-3294 (2001) https://doi.org/10.1021/ja004176c
  26. Ten Brink, H. B., Tuynman, A., Dekker, H. L., Hemrika, W., Izumi, Y., Oshiro, T., Schoemaker, H. E. and Wever, R., Inorg. Chem., 37, 6780-6784 (1998) https://doi.org/10.1021/ic9806075
  27. Ten Brink, H. B., Schoemaker, H. E. and Wever, R., Eur. J. Biochem., 268, 132-138 (2001) https://doi.org/10.1046/j.1432-1327.2001.01856.x
  28. Carter-Franklin, J. N., Parrish, J. D., Tschirret-Guth, R. A., Little, R. D. and Butler, A., J. Am. Chem. Soc., 125, 3688-3689 (2003) https://doi.org/10.1021/ja029271v
  29. Tanaka, N., Dumay, V., Liao, Q., Lange, A. J. and Wever, R., Eur. J. Biochem., 268, 2162-2167 (2002)
  30. Ohshiro, T., Hemrika, W., Aibara, T., Wever, R. and Izumu, Y., Phytochemistry, 60, 595-601 (2002) https://doi.org/10.1016/S0031-9422(02)00160-7