References
- Wentrcek, P. R.; Wood, B. J.; Wise, H. J. Catal. 1976, 43, 366
- Araki, M.; Ponec, V. J. Catal. 1976, 44, 439 https://doi.org/10.1016/0021-9517(76)90421-8
- Joyner, R. W. J. Catal. 1977, 50, 176 https://doi.org/10.1016/0021-9517(77)90020-3
- Goodman, D. W.; Kelly, R. D.; Madey, T. E.; Yates, Jr, J. T. J. Catal. 1980, 63, 226 https://doi.org/10.1016/0021-9517(80)90075-5
- Peebes, P. R.; Wood, B. J.; Wise, H. J. Phys. Chem. 1983, 87, 4378 https://doi.org/10.1021/j100245a014
- Fithzharris, W. D.; Katzer, J. R.; Manogue, W. H. J. Catal. 1982, 76, 369 https://doi.org/10.1016/0021-9517(82)90267-6
- Weisel, M. D.; Robbins, J. L.; Hoffman, F. M. J. Phys. Chem. 1993, 97, 9441 https://doi.org/10.1021/j100139a031
- Bahr, H. A. Gesamelte Abb. Kennt. Kohle 1929, 8, 219
- Medsford, S. J. Chem. Soc. 1923, 123, 1452 https://doi.org/10.1039/ct9232301452
- Martin, G. A.; Primet, M.; Dalmon, J. A. J. Catal. 1978, 53, 321 https://doi.org/10.1016/0021-9517(78)90104-5
- Falconer, J. L.; Zagli, A. E. J. Catal. 1980, 60, 280
- Saito, M.; Anderson, A. B. J. Catal. 1981, 67, 296 https://doi.org/10.1016/0021-9517(81)90289-X
- Weatherbee, G. D.; Bartholomew, C. H. J. Catal. 1981, 68, 67 https://doi.org/10.1016/0021-9517(81)90040-3
- Lizuka, T.; Tanaka, Y.; Tanabe, K. J. Catal. 1982, 76, 1 https://doi.org/10.1016/0021-9517(82)90230-5
- Fukitani, T.; Choi, Y.; Sano, M.; Kushida, Y.; Nakamura, J. J. Phys. Chem. B 2000, 104, 1235 https://doi.org/10.1021/jp9920242
- Zhou, T.; Liu, A.; Mo,Y.; Zhang, H. J. Phys. Chem. A 2000, 104, 4505 https://doi.org/10.1021/jp9929622
- Watwe, R. M.; Bengaard, H. S.; Nielsen, R.; Norskev, J. K. J. Catal. 2000, 189, 16 https://doi.org/10.1006/jcat.1999.2699
- Ackermann, M.; Robach, O.; Walker, C.; Quines, C.; Isern, H.; Ferrer, S. Surface Science 2004, 557, 21 https://doi.org/10.1016/j.susc.2004.03.061
- Peebles, D. E.; Goodman, D. W. J. Phys. Chem. 1983, 87, 4378 https://doi.org/10.1021/j100245a014
- Goodman, D. W.; Kelly, R. D.; Madey, T. E.; White, J. M. J. Catal. 1980, 64, 479 https://doi.org/10.1016/0021-9517(80)90519-9
- Choe, S. J.; Kang, H. J.; Park, D. H.; Huh, D. S.; Park, J. Appl. Surf. Sci. 2001, 181, 265 https://doi.org/10.1016/S0169-4332(01)00398-1
- Anderson, A. B. J. Phys. Chem. 1975, 65, 1187
- Anderson, A. B.; Grimes, R. W.; Hong, S. Y. J. Phys. Chem. 1987, 91, 4245 https://doi.org/10.1021/j100300a009
- Anderson, A. B.; Jen, S. F. J. Phys. Chem. 1990, 94, 1607 https://doi.org/10.1021/j100367a071
- Parr, R. G. Quantum Theory of Molecular Electronic Structure; Benjamin: New York, 1964
- Anderson, A. B. J. Chem. Phys. 1972, 56, 32112
- Anderson, A. B. J. Chem. Phys. 1976, 64, 4046 https://doi.org/10.1063/1.432013
- Ruy, G. H.; Park, S. C.; Lee, S.-B. Surf. Sci. 1999, 427-428, 419
- Choe, S. J.; Park, D. H.; Huh, D. S. Bull. Korean Chem. Soc. 2000, 21, 779
- Choe, S. J.; Kang, H. J.; Park, D. H.; Huh, D. S. Bull. Korean Chem. Soc. 2004, 25, 1314 https://doi.org/10.5012/bkcs.2004.25.9.1314
- Anderson, A. B.; Choe, S. J. J. Phys. Chem. 1989, 93, 6145 https://doi.org/10.1021/j100353a039
- Choe, S. J.; Park, D. H.; Huh, D. S. Bull. Korean Chem. Soc. 1994, 15, 933
- Toyoshima; Somorjai, G. A. Catal. Rev. Sci. Eng. 1979, 19, 1054 https://doi.org/10.1080/03602457908065102
- Eichler, A. Surf. Sci. 2003, 526, 332 https://doi.org/10.1016/S0039-6028(02)02682-1
- Huber, K. P.; Herzberg, G. Molecular and Spectra and Molecular Structure IV. Constant of Diatomic Molecules; Van Nostrand Reinhold Company: 1979
- Siegbahn, P. M.; Panas, I. Surf. Sci. 1990, 240, 37 https://doi.org/10.1016/0039-6028(90)90728-Q
- Dalmoon, J. A.; Martin, G.. A. J. Chem. Soc., Faraday Trans. 1 1976, 75, 1011 https://doi.org/10.1039/f19797501011
- Solymosi, F.; Erdohelyi, A.; Basagi, T. J. Catal. 1981, 68, 67 https://doi.org/10.1016/0021-9517(81)90040-3
- Langeveld, A. D.; Koster, A.; Santen, R. A. Surface Science 1990, 225, 143 https://doi.org/10.1016/0039-6028(90)90432-8
- Alex Mills, G.; Steffgen, F. W. Catal. Rev. 1973, 8, 159 https://doi.org/10.1080/01614947408071860
- Rostrup-Nielsen, J. R. Catalysis, Science and Technology; Anderson, J. R.; Boudart, M., Eds.; Spring-Verlag: Berlin, 1984; Vol. 5, Chap. 1
- Park, S. C.; Park, W. K.; Bowman, J. M. Surf. Sci. 1999, 427-428, 343 https://doi.org/10.1016/S0039-6028(99)00300-3
- Head-Gordon, M.; Tully, J. C. J. Chem. Phys. 1992, 96, 3939 https://doi.org/10.1063/1.461896
Cited by
- Recent advances in catalytic hydrogenation of carbon dioxide vol.40, pp.7, 2011, https://doi.org/10.1039/c1cs15008a
- Methanation of carbon dioxide: an overview vol.5, pp.1, 2011, https://doi.org/10.1007/s11705-010-0528-3
- vol.4, pp.12, 2012, https://doi.org/10.1002/cctc.201200397
- Methane formation from the hydrogenation of carbon dioxide on Ni(110) surface – a density functional theoretical study vol.15, pp.15, 2013, https://doi.org/10.1039/c3cp44495c
- Enhanced low-temperature activity of CO2 methanation over highly-dispersed Ni/TiO2 catalyst vol.3, pp.10, 2013, https://doi.org/10.1039/c3cy00355h
- Computational Approaches to the Chemical Conversion of Carbon Dioxide vol.6, pp.6, 2013, https://doi.org/10.1002/cssc.201200872
- Development of NiCu Catalysts for Aqueous-Phase Hydrodeoxygenation vol.4, pp.8, 2014, https://doi.org/10.1021/cs500562u
- ) in various structures supported on unzipped graphene oxide – a DFT study vol.17, pp.16, 2015, https://doi.org/10.1039/C5CP01121C
- Nanoporous Materials as New Engineered Catalysts for the Synthesis of Green Fuels vol.20, pp.4, 2015, https://doi.org/10.3390/molecules20045638
- methanation on Ni@MOF-5 via control of active species dispersion vol.51, pp.9, 2015, https://doi.org/10.1039/C4CC08733J
- : Probing the Chemical State of the Ni(111) Surface during the Methanation Reaction with Ambient-Pressure X-Ray Photoelectron Spectroscopy vol.138, pp.40, 2016, https://doi.org/10.1021/jacs.6b06939
- vol.30, pp.11, 2016, https://doi.org/10.1021/acs.energyfuels.6b01723
- Supported Catalysts for CO2 Methanation: A Review vol.7, pp.2, 2017, https://doi.org/10.3390/catal7020059
- in a dielectric barrier discharge reactor: effect of argon addition vol.50, pp.18, 2017, https://doi.org/10.1088/1361-6463/aa64bb
- Methanation at Very Low COx/H2 Ratio: Effect of Ce on Ni–Ce–Al Catalyst Properties and Empirical Kinetics pp.1572-879X, 2018, https://doi.org/10.1007/s10562-018-2607-x
- Conversion pp.16146832, 2018, https://doi.org/10.1002/aenm.201801587
- as a New Support vol.8, pp.23, 2018, https://doi.org/10.1002/aenm.201800800
- methanation to ambitious long-chain hydrocarbons: alternative fuels paving the path to sustainability pp.1460-4744, 2019, https://doi.org/10.1039/C8CS00527C
- Bifurcation Phase Studies of Belousov-Zhabotinsky Reaction Containing Oxalic Acid and Acetone as a Mixed Organic Substrate in an Open System vol.28, pp.9, 2005, https://doi.org/10.5012/bkcs.2007.28.9.1489
- Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
- A highly dispersed Pd–Mg/SiO2 catalyst active for methanation of CO2 vol.266, pp.1, 2009, https://doi.org/10.1016/j.jcat.2009.05.018
- CO2 as Carbon Source for Fuel Synthesis vol.45, pp.None, 2005, https://doi.org/10.1016/j.egypro.2014.01.138
- Catalytic behavior of supported Ru nanoparticles on the (101) and (001) facets of anatase TiO2 vol.4, pp.21, 2005, https://doi.org/10.1039/c3ra47076h
- CO2 Methanation over Supported Ru/Al2O3 Catalysts: Mechanistic Studies by In situ Infrared Spectroscopy vol.1, pp.12, 2005, https://doi.org/10.1002/slct.201600651
- Effect of the structure of Ni/TiO2 catalyst on CO2 methanation vol.41, pp.47, 2016, https://doi.org/10.1016/j.ijhydene.2016.08.093
- Plasma-catalytic hybrid process for CO2 methanation: optimization of operation parameters vol.126, pp.2, 2019, https://doi.org/10.1007/s11144-018-1508-8
- Tuning Zeolite Properties towards CO 2 Methanation: An Overview vol.11, pp.10, 2019, https://doi.org/10.1002/cctc.201900229
- Promotion effect of CO on methanation of CO2-rich gas over nanostructured modified NiO/γ-Al2O3 catalysts vol.10, pp.3, 2005, https://doi.org/10.1088/2043-6254/ab2ec7
- Effects of the fabrication strategy on the catalytic performances of Co-Ni bimetal ordered mesoporous catalysts toward CO2 methanation vol.3, pp.11, 2005, https://doi.org/10.1039/c9se00336c
- Overview performance of lanthanide oxide catalysts in methanation reaction for natural gas production vol.26, pp.36, 2005, https://doi.org/10.1007/s11356-019-06607-8
- Multiscale Study of the Mechanism of Catalytic CO2 Hydrogenation: Role of the Ni(111) Facets vol.10, pp.None, 2020, https://doi.org/10.1021/acscatal.0c01599
- Essential Role of the Support for Nickel-Based CO2 Methanation Catalysts vol.10, pp.None, 2005, https://doi.org/10.1021/acscatal.0c03471
- Fabrication and characterization of Ni-Ce-Zr ternary disk-shaped catalyst and its application for low-temperature CO2 methanation vol.260, pp.None, 2005, https://doi.org/10.1016/j.fuel.2019.116260
- Thermochemical and electrochemical aspects of carbon dioxide methanation: A sustainable approach to generate fuel via waste to energy theme vol.712, pp.None, 2005, https://doi.org/10.1016/j.scitotenv.2019.136482
- Nano-Ru Supported on Ni Nanowires for Low-Temperature Carbon Dioxide Methanation vol.10, pp.5, 2020, https://doi.org/10.3390/catal10050513
- Electrocatalytic behaviour of CeZrOx-supported Ni catalysts in plasma assisted CO2 methanation vol.10, pp.14, 2005, https://doi.org/10.1039/d0cy00312c
- Promising Catalytic Systems for CO2 Hydrogenation into CH4: A Review of Recent Studies vol.8, pp.12, 2020, https://doi.org/10.3390/pr8121646
- CO2 Methanation: Nickel-Alumina Catalyst Prepared by Solid-State Combustion vol.14, pp.22, 2005, https://doi.org/10.3390/ma14226789
- Recent progress in anti-coking Ni catalysts for thermo-catalytic conversion of greenhouse gases vol.156, pp.None, 2005, https://doi.org/10.1016/j.psep.2021.10.051
- A Comparison of the Efficiency of Catalysts Based on Ni, Ni-Co and Ni-Mo in Pressure Pyrolysis of Biomass Leading to Hythane vol.11, pp.12, 2005, https://doi.org/10.3390/catal11121480