DOI QR코드

DOI QR Code

Zn2+ PVC-based Membrane Sensor Based on 3-[(2-Furylmethylene)amino]-2-thioxo-1,3-thiazolidin-4-one

  • Published : 2005.04.20

Abstract

The 3-[(2-furylmethylene)amino]-2-thioxo-1,3-thiazolidin-4-one (FTT) was used as an excellent ionophore in construction of a $Zn^{2+}$ PVC-based membrane sensor. The best performance was obtained with a membrane composition of 30% poly(vinyl chloride), 62% nitrobenzen (NB), 3% FTT and 5% sodium tetraphenyl borate (TBP). This membrane sensor shows very good selectivity and sensitivity towards $Zn^{2+}$ over a wide variety of cations, including alkali, alkaline earth, transition and heavy metal ions. The membrane sensor revealed a great enhancement in selectivity coefficients for $Zn^{2+}$ ions, in comparison to the previously reported $Zn^{2+}$ membrane sensors. Theoretical studies also showed the selective interaction of TFF and $Zn^{2+}$ ions. The proposed membrane sensor exhibits a Nernstian behavior (with slope of 29.3 ${\pm}$ 0.3 mV per decade) over a wide concentration range (1.0 ${\times}$ $10^{-6}$-1.0 ${\times}$ $10^{-2}$) with a detection limit of 8.5 ${\times}$ $10^{-7}$ M (52 ng mL$^{-1}$). It shows relatively fast response time, in the whole concentration range ($\lt$ 20 s), and can be used for at least 10 weeks in a pH range of 3.0-7.0. The proposed membrane sensor was successfully used in direct determination of $Zn^{2+}$ ions in wastewater of industrial zinc electroplating companies, and also as an indicator electrode in titration with EDTA.

Keywords

References

  1. Dumkiewicz, R.; Wardak, C.; Zareba, S. Analyst 2000, 125, 527 https://doi.org/10.1039/a907453h
  2. Gupta, V. K.; Kumar, A.; Mangla, R. Sens. Actuators B 2001, 76, 617 https://doi.org/10.1016/S0925-4005(01)00656-6
  3. Jain, A. K.; Sondhi, S. M.; Rajvanshi, S. Electroanalysis 2002, 14, 293 https://doi.org/10.1002/1521-4109(200202)14:4<293::AID-ELAN293>3.0.CO;2-Y
  4. Gupta, V. K.; Jain, A. K.; Mangla, R.; Kumar, P. Electroanalysis 2001, 13, 1036 https://doi.org/10.1002/1521-4109(200108)13:12<1036::AID-ELAN1036>3.0.CO;2-7
  5. Gholivand, M. B.; Mozaffari, Y. Talanta 2003, 59, 399
  6. Saleh, M. B.; Abdel Gaber, A. A. Electroanalysis 2001, 13, 104 https://doi.org/10.1002/1521-4109(200102)13:2<104::AID-ELAN104>3.0.CO;2-2
  7. Gupta, V. K.; Chauhan, D. K.; Saini, V. K.; Agarwal, S.; Antonijevic, M. M.; Lang, H. Sensors 2003, 3, 223 https://doi.org/10.3390/s30700223
  8. Fakhari, A. R.; Shamsipur, M.; Ghanbari, Kh. Anal. Chim. Acta 2002, 460, 177 https://doi.org/10.1016/S0003-2670(02)00200-3
  9. Ganjali, M. R.; Babaei, L. H.; Taghavaei-Ganjali, S,; Modjalal, A.; Shamsipur, M.; Hosseini, M.; Javanbakht, M. Bull. Korean Chem. Soc. 2004, 25, 177 https://doi.org/10.5012/bkcs.2004.25.2.177
  10. Ganjali, M. R.; Fathi, H.; Rahmani, H.; Pirelahi, H. Electroanalysis 2000, 12, 1138 https://doi.org/10.1002/1521-4109(200010)12:14<1138::AID-ELAN1138>3.0.CO;2-X
  11. Ganjali, M. R.; Daftari, A.; Rezapour, M.; Poursaberi, T.; Haghgoo, S. Talanta 2003, 59, 613 https://doi.org/10.1016/S0039-9140(02)00573-8
  12. Ganjali, M. R.; Pourjavid, M. R.; Mouradzadegun, K.; Hosseini, M.; Mizani, F. Bull. Korean Chem. Soc. 2003, 24, 1585 https://doi.org/10.5012/bkcs.2003.24.11.1585
  13. Ganjali, M. R.; Ghorbani, M.; Daftari, A.; Norouizi, P.; Pirelahi, H.; Dargahani, H. D. Bull. Korean Chem. Soc. 2004, 25, 172 https://doi.org/10.5012/bkcs.2004.25.2.172
  14. Bakker, E. Electroanalysis 1997, 9, 7 https://doi.org/10.1002/elan.1140090103
  15. Thompson, M. A.; Glendening, E. D.; Feller, D. J. J. Phys. Chem. 1994, 98, 10657
  16. Glendening, E. D.; Feller, D. J.; Thompson, M. A. J. Am. Chem. Soc. 1994, 116, 1037
  17. Dong, L. Y.; Kollman, P. A. J. Am. Chem. Soc. 1990, 112, 5716 https://doi.org/10.1021/ja00171a006
  18. Saiful Islam, M.; Pethrick, R. A.; Pugh, D.; Wilson, M. J. J. Chem. Soc. Faraday Trans. 1997, 93, 387 https://doi.org/10.1039/a604125f
  19. Frischetal, M. J. Gaussion 98, Version 5.2; Gaussian, Inc.: Pittsburgh, PA, copyright, 1995-1998
  20. Hancock, R. D.; Martell, A. E. J. Chem. Educ. 1996, 73, 654 https://doi.org/10.1021/ed073p654
  21. Rosatzin, T.; Bakker, E.; Suzuki, K.; Simon, W. Anal. Chim. Acta 1993, 280, 197 https://doi.org/10.1016/0003-2670(93)85122-Z
  22. Ganjali, M. R.; Daftari, A.; Mizani, F.; Salavati-Niasari, M. Bull. Korean Chem. Soc. 2003, 24, 23 https://doi.org/10.5012/bkcs.2003.24.1.023
  23. Ganjali, M. R.; Emami, M.; Salavati-Niasari, M. Bull. Korean Chem. Soc. 2002, 23, 1394 https://doi.org/10.5012/bkcs.2002.23.10.1394
  24. IUPAC Analytical Chemistry Division, Commission on Analytical Nomenclature Pure Appl. Chem. 1976, 48, 127 https://doi.org/10.1351/pac197648010127
  25. Bakker, E. Anal. Chem. 2000, 72, 1127 https://doi.org/10.1021/ac991146n

Cited by

  1. Fe(III) Ion‐Selective Membrane Electrode Based on 4‐Amino‐6‐methyl‐3‐methylmercapto‐1,2,4‐triazin‐5‐one vol.40, pp.8, 2007, https://doi.org/10.1080/00032710701380632
  2. Determination of Vanadyl Ions by a New PVC Membrane Sensor Based on N, N'-bis-(Salicylidene)-2,2-Dimethylpropane-1,3-Diamine vol.7, pp.4, 2007, https://doi.org/10.1109/JSEN.2007.891986
  3. Barium(II)-PVC Membrane Sensor Based on 4-4′-Methylenediantipyrine as a Neutral Carrier vol.41, pp.12, 2008, https://doi.org/10.1080/00032710802238077
  4. Magnesium-PVC Membrane Sensor Based on 4,5-Bis(Benzoylthio)-1,3-Dithiole-2-Thione vol.41, pp.14, 2008, https://doi.org/10.1080/00032710802363560
  5. Application of Novel Praseodymium (III) PVC‐Membrane Electrode for Determination of Pr(III) Ions in Soil and Sediment Samples vol.41, pp.5, 2008, https://doi.org/10.1080/00032710801934957
  6. Developments in the Field of Conducting and Non-conducting Polymer Based Potentiometric Membrane Sensors for Ions Over the Past Decade vol.8, pp.4, 2008, https://doi.org/10.3390/s8042331
  7. Erbium(III) PVC Membrane Ion-Selective Sensor based on 4-(2-Thiazolylazo)resorcinal vol.42, pp.2, 2009, https://doi.org/10.1080/00032710802585659
  8. Terbium(III) Ion-Selective Electrochemical Sensor Based on Hematoporphyrin vol.42, pp.2, 2009, https://doi.org/10.1080/00032710802585675
  9. -Bis(2-oxo-1,2-diphenylethylidene) ethanedihydrazide vol.42, pp.3, 2009, https://doi.org/10.1080/00032710802677092
  10. Determination of Fluoride Ions in Mouthwash Samples by a PVC Membrane Samarium(III) Sensor vol.42, pp.3, 2009, https://doi.org/10.1080/00032710802677142
  11. -Bis-[1-(2-hydroxy-1,2-diphenyl)ethylidene]ethanedihydrazide vol.42, pp.7, 2009, https://doi.org/10.1080/00032710902807821
  12. Carbon paste electrode modified with chromium thiopental for the potentiometric flow injection analysis of chromium (III) vol.94, pp.2, 2012, https://doi.org/10.1080/02772248.2011.647028
  13. Application of Tetra Cyclohexyl Tin(IV) as an Anionic Carrier for the Construction of a New Salicylate Membrane Sensor vol.54, pp.4, 2013, https://doi.org/10.1002/jccs.200700139
  14. A membrane electrode reversible to zinc ions based on a polymer chelating adsorbent vol.69, pp.1, 2014, https://doi.org/10.1134/S1061934813110154
  15. Ion in Environmental Samples by Fabrication of Pyrolytic Graphite Electrode Based on Schiff Bases of Hydrazinecarbothioamide Derivatives vol.164, pp.9, 2017, https://doi.org/10.1149/2.1361709jes
  16. Dysprosium(III) Ion-Selective Electrochemical Sensor Based on 6-Hydrazino-1,5-diphenyl-6,7-dihydropyrazolo[3,4-d]pyrimidine-4(5H)-imine vol.72, pp.9, 2007, https://doi.org/10.1135/cccc20071189
  17. Potentiometric Zinc Ion Sensor Based on Honeycomb-Like NiO Nanostructures vol.12, pp.11, 2012, https://doi.org/10.3390/s121115424
  18. Highly Selective Lead(II) Coated Graphite Sensor Based on 4,13-Didecyl-1,7,10,16-tetraoxa-4,13- diazacyclooctadecane as a Neutral Ionophore vol.63, pp.1, 2018, https://doi.org/10.1134/S0036023618010023
  19. Zn(II)-Selective Membrane Electrode Based on Tetraazamacrocycle [Bzo2Me2Ph2(16)hexaeneN4] vol.18, pp.12, 2006, https://doi.org/10.1002/elan.200503495
  20. Synthesis of N′-(1-Pyridin-2-ylmethylene)-2-furohydrazide and Its Application in Construction of a Highly Selective PVC-Based Membrane Sensor for La(III) Ions vol.22, pp.7, 2006, https://doi.org/10.2116/analsci.22.943
  21. Fabrication of a novel holmium(III) PVC membrane sensor based on 4-chloro-1,2-bis(2-pyridinecarboxamido)benzene as a neutral ionophore vol.37, pp.7, 2007, https://doi.org/10.1007/s10800-007-9321-5
  22. Tripodal chelating ligand-based sensor for selective determination of Zn(II) in biological and environmental samples vol.388, pp.8, 2007, https://doi.org/10.1007/s00216-007-1434-5
  23. Determination of copper(II) in wastewater by electroplating samples using a PVC-membrane copper(II)-selective electrode vol.62, pp.11, 2007, https://doi.org/10.1134/S1061934807110135
  24. Subnanomolar determination of a beryllium ion by a novel Be(II) microsensor based on 4-nitrobenzo-9-crown-3-ether vol.63, pp.7, 2008, https://doi.org/10.1134/S1061934808070149
  25. Humidity Sensing Properties of Nanoporous TiO2-SnO2 Ceramic Sensors vol.26, pp.11, 2005, https://doi.org/10.5012/bkcs.2005.26.11.1881
  26. Highly Selective and Sensitive Copper(II) Membrane Sensors Based on 6-Methyl-4-(1-phenylmethylidene)amino-3-thioxo-1,2,4-triazin-5-one as a New Neutral Ionophore vol.17, pp.24, 2005, https://doi.org/10.1002/elan.200503356
  27. Sub-Micro Molar Monitoring of La3+ by a Novel Lanthanum PVC-Based Membrane Sensor Based on 3-Hydroxy-N'-(pyridin-2-ylmethylene)-2-naphthohydrazide vol.27, pp.10, 2005, https://doi.org/10.5012/bkcs.2006.27.10.1581
  28. A Highly Selective and Sensitive Calcium(II)-Selective PVC Membrane Based on Dimethyl 1-(4-Nitrobenzoyl)-8-oxo-2,8-dihydro-1H-pyrazolo[5,1-a]isoindole-2,3-dicarboxylate as a Novel Ionophore vol.27, pp.6, 2006, https://doi.org/10.5012/bkcs.2006.27.6.835
  29. A Highly Selective and Sensitive Barium(II)-Selective PVC Membrane Based on Dimethyl 1-Acetyl-8-oxo-2,8-dihydro- 1H-pyra-zolo[5,1-a]isoindole-2,3-dicarboxylate vol.18, pp.9, 2006, https://doi.org/10.1002/elan.200503472
  30. Highly selective and sensitive chromium(III) membrane sensors based on 4-amino-3-hydrazino-6-methyl-1,2,4-triazin-5-one as a new neutral ionophore vol.119, pp.1, 2005, https://doi.org/10.1016/j.snb.2005.11.048
  31. A New Europium(III) PVC Membrane Potentiometric Sensor Based on 4-(2-Hydroxybenzylideneamino)-6-methyl-3-thioxo-3,4-dihydro-1,2,4-triazin-5(2H)-one vol.80, pp.1, 2005, https://doi.org/10.1246/bcsj.80.172
  32. Synthesis of a New Hexadendates Schiff's Base and Its Application in the Fabrication of a Highly Selective Mercury(II) Sensor vol.28, pp.1, 2005, https://doi.org/10.5012/bkcs.2007.28.1.068
  33. Construction of a highly selective PVC-based membrane sensor for Ce(III) ions vol.120, pp.2, 2007, https://doi.org/10.1016/j.snb.2006.03.013
  34. Fabrication of an iron(III) PVC-membrane sensor based on bis-benzilthiocarbohydrazide as a selective sensing material vol.29, pp.5, 2005, https://doi.org/10.1016/j.msec.2008.12.004
  35. Zinc(II) selective poly(vinyl chloride) membrane ISE using a macrocyclic compound 1,12,14-triaza-5,8-dioxo-3(4),9(10)-dibenzoylcyclopentadeca-1,12,14-triene as neutral carrier vol.14, pp.1, 2005, https://doi.org/10.1016/j.jscs.2009.12.009
  36. Acyclic Arylamine-Based Ionophores as Potentiometric Sensors for Zn2+ and Ni2+ Ions vol.3, pp.4, 2005, https://doi.org/10.3390/c3040034