DOI QR코드

DOI QR Code

Excitation Energy Transfer Rate Constants in meso-meso Linked Zn(II) Porphyrin Arrays with Energy Accepting 5,15-Bisphenylethynylated Zn(II) Porphyrin

  • Ko, Da-Mee (Center for Ultrafast Optical Characteristics Control, Yonsei University) ;
  • Kim, Hee-Young (Department of Chemistry, Yonsei University) ;
  • Park, Jin-Hee (Center for Ultrafast Optical Characteristics Control, Yonsei University) ;
  • Kim, Dong-Ho (Center for Ultrafast Optical Characteristics Control, Yonsei University) ;
  • Sim, Eun-Ji (Department of Chemistry, Yonsei University)
  • Published : 2005.10.20

Abstract

The excitation energy transfer process occurring in energy donor-acceptor linked porphyrin array system is theoretically simulated using the on-the-fly filtered propagator path integral method. The compound consists of an energy donating meso-meso linked Zn(II) porphyrin array and an energy accepting 5,15-bisphenylethynylated Zn(II) porphyrin, in which the donor array and the acceptor are linked via a 1,4-phenylene spacer. Real-time path integral simulations provide time-evolution of the site population and the excitation energy transfer rate constants are determined. Simulations and experiments show an excellent agreement indicating that the path integration is a useful tool to investigate the energy transfer dynamics in molecular assemblies.

Keywords

References

  1. Sundstrom, V.; Pullerits, T.; Grondelle, R. J. Phys. Chem. B 1999, 103, 2327 https://doi.org/10.1021/jp983722+
  2. Warshel, A.; Parson, W. W. J. Am. Chem. Soc. 1987, 109, 6143 https://doi.org/10.1021/ja00254a039
  3. Knapp, E. W.; Fischer, S. F.; Zinth, W.; Sander, M.; Kaiser, W.; Deisenhofer, J.; Michel, H. Proc. Natl. Acad. Sci. USA 1985, 82, 8463
  4. Makri, N.; Sim, E.; Topaler, M.; Makarov, D. E. Proc. Natl. Acad. Sci. USA 1996, 93, 3926
  5. Sim, E.; Makri, N. J. Phys. Chem. 1997, 101, 5446
  6. Aratani, N.; Cho, H. S.; Ahn, T. K.; Cho, S.; Kim, D.; Sumi, H.; Ocuka, A. J. Am. Chem. Soc. 2003, 125, 9668 https://doi.org/10.1021/ja030002u
  7. Song, N. W.; Cho, H. S.; Yoon, M. C.; Aratani, N.; Osuka, A.; Kim, D. Bull. Korean Chem. Soc. 2002, 23, 271 https://doi.org/10.1007/BF02705726
  8. Kim, Y. H.; Jeong, D. H.; Kim, D.; Jeoung, S. C.; Cho, H. S.; Kim, S. K.; Aratani, N.; Osuka, A. J. Am. Chem. Soc. 2001, 123, 76 https://doi.org/10.1021/ja0009976
  9. Forster, T. Discuss. Faraday Soc. 1959, 27, 7 https://doi.org/10.1039/df9592700007
  10. Dexter, D. L. J. Chem. Phys. 1953, 21, 836 https://doi.org/10.1063/1.1699044
  11. Sim, E. J. Chem. Phys. 2001, 115, 4450
  12. Sim, E. J. Phys. Chem. B 2004, 108, 19093 https://doi.org/10.1021/jp045641l
  13. Feynman, R. P.; Vernon, F. L. Ann. Phys. 1963, 24, 118 https://doi.org/10.1016/0003-4916(63)90068-X
  14. Makri, N.; Makarov, D. E. J. Chem. Phys. 1995, 102, 4600; 102, 4611 https://doi.org/10.1063/1.469508
  15. Sim, E.; Makri, N. Chem. Phys. Lett. 1996, 249, 224 https://doi.org/10.1016/0009-2614(95)01374-1
  16. Leggett, A. J.; Charcravarty, S.; Dorsey, A. T.; Fisher, M. P. A.; Garg, A.; Zwerger, W. Rev. Mod. Phys. 1987, 59, 1
  17. Sim, E.; Makri, N. Comput. Phys. Commun. 1997, 99, 335 https://doi.org/10.1016/S0010-4655(96)00130-0
  18. Forster, T. Ann. Phys. 1948, 2, 55
  19. Forster, T. Discuss. Faraday Soc. 1959, 27, 7
  20. van Patten, P. G.; Shreve, A. P.; Lindsey, J. S.; Donohoe, R. J. Phys. Chem. B 1998, 102, 4209 https://doi.org/10.1021/jp972304m
  21. Cho, H. S.; Jeong, D. H.; Yoon, M.-C.; Kim, Y. H.; Kim, Y.-R.; Kim, D.; Jeoung, S. C.; Kim, S. K.; Aratani, N.; Shinmori, H.; Osuka, A. J. Phys. Chem. A 2001, 105, 4200
  22. Winterstetter, M. Phys. Rev. E 1999, 60, 203 https://doi.org/10.1103/PhysRevE.60.203
  23. Weiss, U. Quantum Dissipative Systems; World Scientific: New Jersey, 1993
  24. Hayashi, S.; Kato, S. J. Phys. Chem. A 1998, 102, 3333 https://doi.org/10.1021/jp980934y
  25. Perng, B.; Newton, M. D.; Raineri, F. O.; Friedman, H. L. J. Chem. Phys. 1996, 104, 7177 https://doi.org/10.1063/1.471432
  26. Ahn, T. K.; Yoon, Z. S.; Hwang, I.-W.; Lim, J. K.; Rhee, H.; Joo, T.; Sim, E.; Kim, S. K.; Aratani, N.; Osuka, A.; Kim, D. J. Phys. Chem. B 2005, 109, 11223
  27. J. Phys. Chem. B v.109 Ahn, T.K.;Yoon, Z.S.;Hwang, I.W.;Lim, J.K.;Rhee, H.;Joo, T.;Sim, E.;Kim, S.K.;Aratani, N.;Osuka, A.;Kim, D. https://doi.org/10.1021/jp050662g

Cited by

  1. Intramolecular Energy Transfer in a Bichromophoric System, Zinc meso-Tetratolylporphyrin Covalently Linked to Anthracene through Ethylene Linkage vol.27, pp.5, 2005, https://doi.org/10.5012/bkcs.2006.27.5.751