DOI QR코드

DOI QR Code

Crystal Packing of Two Different Tetranuclear Iron(III) Clusters, [(tacn)4Fe4O2(OH)4]2.8Br.9H2O (tacn = 1,4,7-triazacyclononane)

  • Jin, Mi-Kyung (Department of Chemistry-BK21 and the Institute of Basic Sciences, Sungkyunkwan University) ;
  • Kim, Yoo-Jin (Department of Chemistry-BK21 and the Institute of Basic Sciences, Sungkyunkwan University) ;
  • Jung, Duk-Young (Department of Chemistry-BK21 and the Institute of Basic Sciences, Sungkyunkwan University) ;
  • Heu, Min (Department of Physics, The Catholic University of Korea) ;
  • Yoon, Seok-Won (Department of Physics, The Catholic University of Korea) ;
  • Suh, Byoung-Jin (Department of Physics, The Catholic University of Korea)
  • Published : 2005.02.20

Abstract

[$(tacn)_4Fe_4O_2(OH)_4]_2{\cdot}8Br{\cdot}9H_2O$ (tacn = 1,4,7-triazacyclononane), a tetranuclear iron(III) complex was synthesized by the hydrolysis of (tacn)FeCl3 and crystallizes in the orthorhombic space group, Pca2(1), with cell parameters, a = 37.574(3) $\AA$, b = 16.9245(12) $\AA$, c = 14.2830(11) $\AA$, V = 9082.9(12) ${\AA}^3$. [$(tacn)_4Fe_4O_2(OH)_4]^{4+}$ cations approach S4 point symmetry containing an adamantane skeleton. Four Fe(III) atoms have distorted octahedral environments with two hydroxo and an oxo bridges. Two [$(tacn)_4Fe_4O_2(OH)_4]^{4+}$ clusters having different Fe…Fe distances are connected to each other by the networked hydrogen bonds. The electrochemical behavior reveals irreversible three cathodic and two anodic peaks. Magnetic properties are characterized by antiferromagnetic (AF) interactions between Fe(III) ion spins. However, the low-lying states are still magnetic and exhibit a blocking behavior and a magnetic hysteresis at low temperatures.

Keywords

References

  1. Awschalom, D. D.; Di Vincenzo, D. P.; Smyth, J. F. Physics Today 1995, 48, 43
  2. Stamp, P. C. E. Nature 1996, 383, 125 https://doi.org/10.1038/383125a0
  3. Thomas, L.; Lionti, F.; Ballou, R.; Gatteschi, D.; Sessoli, R.; Barabara, B. Nature 1996, 383, 145 https://doi.org/10.1038/383145a0
  4. Gatteschi, D.; Caneschi, A.; Pardi, L.; Sesoli, R. Science 1994, 265, 1054 https://doi.org/10.1126/science.265.5175.1054
  5. Murray, K. S. Adv. Inorg. Chem. 1995, 43, 261 https://doi.org/10.1016/S0898-8838(08)60119-1
  6. Eppley, H. J.; Tsai, H. L.; Folting, K.; Christou, G.; Hendrickson, D. N. J. Am. Chem. Soc. 1995, 117, 301 https://doi.org/10.1021/ja00106a033
  7. Caneschi, A.; Gatteschi, D.; Sesoli, R. J. Chem. Soc., Dalton Trans. 1997, 3963
  8. Solomon, E. I.; Sundaram, U. M.; Machonkin, T. E. Chem. Rev. 1996, 96, 2563 https://doi.org/10.1021/cr950046o
  9. Dismukes, G. C. Chem. Rev. 1996, 96, 2909 https://doi.org/10.1021/cr950053c
  10. Law, N. A.; Caudle, M. T.; Pecoraro, V. L. Adv. Inorg. Chem. 1998, 46, 305 https://doi.org/10.1016/S0898-8838(08)60152-X
  11. Lippard, S. J. Angew. Chem., Int. Ed. Engl. 1988, 27, 344 https://doi.org/10.1002/anie.198803441
  12. Kurtz, J. D. M. Chem. Rev. 1990, 90, 585 https://doi.org/10.1021/cr00102a002
  13. Feig, A. L.; Lippard, S. J. Chem. Rev. 1994, 94, 759 https://doi.org/10.1021/cr00027a011
  14. Wilkins, R. G.; Harrington, P. C. Adv. Inorg. Biochem. 1983, 5, 51
  15. Sjoberg, B.; Graslund, A. Adv. Inorg. Biochem. 1983, 5, 87
  16. Antanaitis, B. C.; Aisen, P. Adv. Inorg. Biochem. 1983, 5, 111
  17. Clegg, G. A.; Fiitton, J. E.; Harrison, P. M.; Treffry, A. Prog. Biophys. Mol. Biol. 1980, 36, 53
  18. Tow, K. J. Biol. Chem. 1982, 256, 9377
  19. Thiel, E. C.; Sayers, D. E.; Brown, M. A. J. Biol. Chem. 1979, 254, 8132
  20. Spiro, T. G.; Pope, L.; Saltman, P. J. Am. Chem. Soc. 1967, 89, 5555 https://doi.org/10.1021/ja00998a008
  21. Spiro, T. G.; Bates, G.; Saltman, P. J. Am. Chem. Soc. 1967, 89, 5559 https://doi.org/10.1021/ja00998a009
  22. Theil, E. C. Adv. Inorg. Biochem. 1983, 5, 1
  23. Fischbach, F. A.; Anderegg, J. W. J. Mol. Biol. 1965, 14, 458 https://doi.org/10.1016/S0022-2836(65)80196-6
  24. Smith, J. M. A.; Helliwell, J. R. Inorg. Chim. Acta 1985, 106, 193 https://doi.org/10.1016/S0020-1693(00)82268-9
  25. Mann, S.; Bannister, J. V.; Williams, R. J. P. J. Mol. Biol. 1986, 188, 225 https://doi.org/10.1016/0022-2836(86)90307-4
  26. Sydora, O. L.; Wolczanski, P. T.; Lobkovsky, E. B. Angew. Chem., Int. Ed. 2003, 42, 2685 https://doi.org/10.1002/anie.200351143
  27. Caneschi, A.; Cornia, A.; Fabretti, A. C.; Gatteschi, D. Angew. Chem., Int. Ed. 1999, 38, 1295 https://doi.org/10.1002/(SICI)1521-3773(19990503)38:9<1295::AID-ANIE1295>3.0.CO;2-L
  28. Zhou, H.; Holm, R. H. Inorg. Chem. 2003, 42, 11 https://doi.org/10.1021/ic020464t
  29. You, J.; Snyder, B. S.; Papaefthymiou, G. C.; Holm, R. H. J. Am. Chem. Soc. 1990, 112, 1067 https://doi.org/10.1021/ja00159a028
  30. Sessoli, R.; Gatteschi, D. Angew. Chem., Int. Ed. 2003, 42, 268 https://doi.org/10.1002/anie.200390099
  31. Aromi, G.; Aubin, S. M. J.; Bolcar, D. N.; Huffman, J. C.; Squire, R. C.; Tsai, H. L.; Wang, S.; Wemple, M. W. Polyhedron 1998, 17, 3005 https://doi.org/10.1016/S0277-5387(98)00104-1
  32. Awschalom, D. D.; Di Vincenzo, D. P.; Smyth, J. F. Science 1992, 258, 414 https://doi.org/10.1126/science.258.5081.414
  33. Barbara, B.; Sampaio, L. C.; Wegrowe, J. E.; Ratnam, B. A.; Marchand, A.; Paulsen, C.; Novak, M. A.; Tholence, J. L.; Uehara, M.; Fruchart, D. J. Appl. Phys. 1993, 73, 6703 https://doi.org/10.1063/1.352508
  34. Tejada, J.; Ziolo, R. F.; Zhang, X. X. Chem. Mater. 1996, 8, 1784 https://doi.org/10.1021/cm9602003
  35. Caneschi, A.; Ohm, T.; Paulsen, C.; Rovai, D.; Sangregorio, C.; Sessoli, R. J. Magn. Magn. Mater. 1998, 177, 1330 https://doi.org/10.1016/S0304-8853(97)00799-3
  36. Wernsdorfer, W.; Sessoli, R.; Caneschi, A.; Gatteschi, D.; Cornia, A.; Mailly, D. J. Appl. Phys. 2001, 87, 5481 https://doi.org/10.1063/1.373379
  37. Wernsdorfer, W.; Caneschi, A.; Sessoli, R.; Gatteschi, D.; Cornia, A.; Villar, V.; Paulsen, C. Phys. Rev. Lett. 2000, 84, 2965 https://doi.org/10.1103/PhysRevLett.84.2965
  38. Furukawa, Y.; Watanabe, K.; Kumagai, K.; Jang, Z.; Lascialfari, A.; Borsa, F.; Gatteschi, D. Phys. Rev. B 2000, 62, 14246 https://doi.org/10.1103/PhysRevB.62.14246
  39. Lascialfari, A.; Jang, Z.; Borsa, F.; Carretta, P.; Gatteschi, D. Phys. Rev. Lett. 1998, 81, 3773 https://doi.org/10.1103/PhysRevLett.81.3773
  40. Barra, A. L.; Caneschi, A.; Cornia, A.; Fabrizi de Biani, F.; Gatteschi, D.; Sangregorio, C.; Sessoli, R.; Sorace, L. J. Am. Chem. Soc. 1999, 121, 5302 https://doi.org/10.1021/ja9818755
  41. Lis, T. Acta Cryst. 1980, B36, 2042
  42. Sessoli, R.; Gatteschi, D.; Caneschi, A.; Novak, M. A. Nature 1993, 365, 141 https://doi.org/10.1038/365141a0
  43. Thomas, L.; Lionti, F.; Ballou, R.; Gatteschi, D. Nature 1996, 383, 145 https://doi.org/10.1038/383145a0
  44. Chudnovsky, E. M. Science 1996, 274, 938 https://doi.org/10.1126/science.274.5289.938
  45. Friedman, J. R.; Sarachik, M. P. Phy. Rev. Lett. 1996, 76, 3830 https://doi.org/10.1103/PhysRevLett.76.3830
  46. Jeon, W. S.; Jin, M. K.; Kim, Y. J.; Jung, D. Y.; Suh, B. J.; Yoon, S. W. Bull. Korean Chem. Soc. 2004, 25, 1036 https://doi.org/10.1007/s11814-008-0169-0
  47. Wernsdorfer, W.; Allaga-Alcalde, N.; Hendrickson, D. N.; Christou, G. Nature 2002, 416, 406 https://doi.org/10.1038/416406a
  48. Aubin, S. M. J.; Wemple, M. W.; Adams, D. M.; Tsai, H.; Christou, G.; Hendrickson, D. N. J. Am. Chem. Soc. 1996, 118, 7746 https://doi.org/10.1021/ja960970f
  49. Wieghardt, K.; Pohl, K.; Jibril, I.; Huttner, G. Angew. Chem., Int. Ed. 1984, 23, 77 https://doi.org/10.1002/anie.198400771
  50. Armstrong, W. H.; Roth, M. E.; Lippard, S. J. J. Am. Chem. Soc. 1987, 109, 6318 https://doi.org/10.1021/ja00255a015
  51. Jameson, D. L.; Xie, C. L.; Hendrickson, D. N.; Potenza, J. A.; Schugar, H. L. J. Am. Chem. Soc. 1987, 109, 740 https://doi.org/10.1021/ja00237a018
  52. Moore, P. B. Am. Mineral. 1972, 57, 397
  53. Miyasato, Y.; Nogami, Y.; Ohba, M.; Sakiyama, H.; Okawa, H. Bull. Chem. Soc. Jpn. 2003, 76, 1009 https://doi.org/10.1246/bcsj.76.1009
  54. Wieghardt, K.; Pohl, K.; Gebert, W. Angew. Chem., Int. Ed. 1983, 22, 727 https://doi.org/10.1002/anie.198307271
  55. SMART, version 5.0; data collection software; Bruker AXS. Inc.: Madison, WI, 1998
  56. SAINT, version 5.0; data intergration software; Bruker AXS. Inc.: Madison, WI, 1998
  57. Sheldrick. G. M. SADABS, A Program for Absorption Correction with the Bruker SMART System; Universitat Gottingen: Gottingen, Germany, 1996
  58. McArdle, P. SHELX-86 and SHELX-97 Users Guide; Crystallography Center, Chemistry Department, National University of Ireland: Galway, Ireland; J. Appl. Crystallogr. 1995, 28, 65
  59. Murch, B. P.; Boyle, P. D.; Que, L. J. Am. Chem. Soc. 1985, 107, 6728 https://doi.org/10.1021/ja00309a061
  60. Zhang, L.; Yan, S.; Li, C.; Liao, D.; Jiang, Z.; Cheng, P.; Wang, G.; Weng, L.; Leng, X. J. Chem. Crystallogr. 2000, 30, 251 https://doi.org/10.1023/A:1009543106577
  61. Wieghardt, K.; Bossek, U.; Gebert, W. Angew. Chem., Int. Ed. 1983, 22, 328 https://doi.org/10.1002/anie.198303281
  62. Murch, B. P.; Bradley, F. C.; Boyle, P. D.; Papaefthymiou, V.; Que, L., Jr. J. Am. Chem. Soc. 1987, 109, 7993 https://doi.org/10.1021/ja00260a009
  63. Drueke, S.; Wieghardt, K.; Nuber, B.; Weiss, J.; Bominaar, E. L.; Sawaryn, A.; Winkler, H.; Trautwein, A. X. Inorg. Chem. 1989, 28, 4477 https://doi.org/10.1021/ic00324a011
  64. Dube, C. E.; Wright, D. W.; Pal, S.; Bonitatebus, P. J.; Armstrong, W. H. J. Am. Chem. Soc. 1998, 120, 3704 https://doi.org/10.1021/ja973668v
  65. Wieghardt, K.; Bossek, U.; Nuber, B.; Weiss, J.; Bonvoisin, J.; Corbella, M.; Vitols, S. E.; Girerd, J.-J. J. Am. Chem. Soc. 1988, 110, 7398 https://doi.org/10.1021/ja00230a021
  66. Zipse, D.; Abboud, K. A.; Dalal, N. S. J. Appl. Phys. 2003, 93, 7086. The atomic coordinates are not included in the paper and we referred to the file No. of 238761 from the CCDC https://doi.org/10.1063/1.1540036
  67. Braga, D.; Grepioni, F.; Orpen, A. G. Crystal Engineering: From Molecules and Crystals to Materials; Kluwer Academic Publishers: Dordrecht, 1999; Chapter 6 https://doi.org/10.1063/1.1540036
  68. Ahn, D. S.; Jeon, I. S.; Jang, S. H.; Park, S. W.; Lee, S.; Cheong, W. Bull. Korean Chem. Soc. 2003, 24, 695 https://doi.org/10.5012/bkcs.2003.24.6.695
  69. Sessler, J. L.; Sibert, J. W.; Lynch, V. Inorg. Chem. 1993, 32, 621 https://doi.org/10.1021/ic00057a022
  70. Brown, C.; Remar, G.; Musselman, R.; Solomon, E. Inorg. Chem. 1995, 34, 688 https://doi.org/10.1021/ic00107a024
  71. Snodin, M. D.; Ould-Moussa, L.; Wallmann, U.; Lecomte, S.; Bachler, V.; Bill, E.; Hummel, H.; Weyhermuller, T.; Hildebrandt, P.; Wieghardt. K. Chem. Eur. J. 1999, 5, 2554 https://doi.org/10.1002/(SICI)1521-3765(19990903)5:9<2554::AID-CHEM2554>3.0.CO;2-H
  72. Gorun, S. M.; Lippard, S. J. Inorg. Chem. 1991, 30, 1625 https://doi.org/10.1021/ic00007a038
  73. Gorun, S. M.; Lippard, S. J. Inorg. Chem. 1991, 30, 1625 https://doi.org/10.1021/ic00007a038

Cited by

  1. Thermal decomposition mechanism of iron(III) nitrate and characterization of intermediate products by the technique of computerized modeling vol.115, pp.1, 2014, https://doi.org/10.1007/s10973-013-3339-1
  2. Structure of a Fe4O6-Heteraadamantane-Type Hexacation Stabilized by Chelating Organophosphine Oxide Ligands vol.14, pp.22, 2005, https://doi.org/10.3390/ma14226840