DOI QR코드

DOI QR Code

Step-wise Anion-Exchange in Layered Double Hydroxide Using Solvothermal Treatment

  • Lee, Jong-Hyeon (Department of Chemistry-BK21, Institute of Basic Science, Sungkyunkwan University) ;
  • Rhee, Seog-Woo (Department of Chemistry-BK21, Institute of Basic Science, Sungkyunkwan University) ;
  • Jung, Duk-Young (Department of Chemistry-BK21, Institute of Basic Science, Sungkyunkwan University)
  • Published : 2005.02.20

Abstract

Synthetic layered double hydroxides (LDHs), [$Mg_4Al_2(OH)_{12}]CO_3{\cdot}nH_2O$, were prepared in the submicron size of plate-like polycrystals. Anion-exchange reactions with various linear dicarboxylic acids were performed to produce LDH/organic hybrid materials by solvothermal treatment in toluene. X-ray powder diffraction spectra for the products indicated that the interlayer spacings of LDHs remarkably changed, up to 20 $\AA$ when 1,10-decanedicarboxylic acid anions were intercalated as an organic guest. Dicarboxylates-LDHs samples could be also re-exchanged consecutively with other dicarboxylic acids or carbonate without serious destruction of layer structure under the scanning electron microscopic observation.

Keywords

References

  1. Miyata, S. Clays Clay Miner. 1983, 31, 305 https://doi.org/10.1346/CCMN.1983.0310409
  2. Miyata, S.; Okada, A. Clays Clay Miner. 1977, 25, 14 https://doi.org/10.1346/CCMN.1977.0250103
  3. Cavani, F.; Trifiro, F.; Vaccari, A. Catal. Today 1991, 11, 173 https://doi.org/10.1016/0920-5861(91)80068-K
  4. Ogawa, M.; Kuroda, K. Chem. Rev. 1995, 95, 399 https://doi.org/10.1021/cr00034a005
  5. Vaccari, A. Catal. Today 1998, 41, 53 https://doi.org/10.1016/S0920-5861(98)00038-8
  6. Portier, J.; Choy, J. H.; Subramanian, M. A. Int. J. Inorg. Mater. 2001, 3, 581 https://doi.org/10.1016/S1466-6049(01)00103-9
  7. Ryu, S. Y.; Yoon, M.; Choy, J. H.; Hwang, S. H.; Frube, A.; Asahi, T.; Masuhara, H. Bull. Korean Chem. Soc. 2003, 24, 446 https://doi.org/10.5012/bkcs.2003.24.4.446
  8. Son, Y. H.; Choy, J. H. Bull. Korean Chem. Soc. 2004, 25, 122 https://doi.org/10.5012/bkcs.2004.25.1.122
  9. Meyn, M.; Beneke, K.; Lagaly, G. Inorg. Chem. 1990, 29, 5201 https://doi.org/10.1021/ic00351a013
  10. Rhee, S. W.; Jung, D. Y. Bull. Korean Chem. Soc. 2002, 23, 35 https://doi.org/10.5012/bkcs.2002.23.1.035
  11. Kwon, T.; Pinnavaia, T. J. Chem. Mater. 1989, 1, 382
  12. Dimotakis, E. D.; Pinnavaia, T. J. Inorg. Chem. 1990, 29, 2393 https://doi.org/10.1021/ic00338a001
  13. Fogg, A. M.; Dunn, J. S.; Shyn, S. G.; Cary, D. R.; O'Hare, D. Chem. Mater. 1998, 10, 351 https://doi.org/10.1021/cm9705202
  14. Fogg, A. M.; Dunn, J. S.; O'Hare, D. Chem. Mater. 1998, 10, 356 https://doi.org/10.1021/cm970553h
  15. Fogg, A. M.; Freij, A. J.; Parkinson, G. M. Chem. Mater. 2002, 14, 232 https://doi.org/10.1021/cm0105099
  16. Boclair, J. W.; Braterman, P. S. Chem. Mater. 1999, 11, 298 https://doi.org/10.1021/cm980523u
  17. Hibino, T.; Tsunashima, A. Chem. Mater. 1997, 9, 2082 https://doi.org/10.1021/cm970115a
  18. Hickey, L.; Kloprogge, J. L.; Frost, R. L. J. Mater. Sci. 2000, 35, 4347 https://doi.org/10.1023/A:1004800822319
  19. Lee, J. H.; Rhee, S. W.; Jung, D. Y. Chem. Comm. 2003, 2740
  20. Lee, J. H.; Rhee, S. W.; Jung, D. Y. Chem. Mater. 2004, 16, 3774 https://doi.org/10.1021/cm049357i
  21. Kim, Y. J.; Lee, E. W.; Jung, D. Y. Chem. Mater. 2001, 13, 2684 https://doi.org/10.1021/cm010219s
  22. Costantino, U. J. Inorg. Nucl. Chem. 1981, 43, 1895 https://doi.org/10.1016/0022-1902(81)80404-6
  23. Newman, S. P.; Jonse, W. New J. Chem. 1998, 22, 105 https://doi.org/10.1039/a708319j
  24. Miyata, S.; Kumura, T. Chem. Lett. 1973, 843
  25. Gutmann, N.; Muller, B. J. Solid State Chem. 1996, 122, 214 https://doi.org/10.1006/jssc.1996.0104
  26. Depege, C.; Metoui, F. Z. E.; Forano, C.; Roy, A.; Dupuis, J.; Besse, J. P. Chem. Mater. 1996, 8, 952 https://doi.org/10.1021/cm950533k
  27. Kooli, F.; Chisem, I. C.; Vucelic, M.; Jones, W. Chem. Mater. 1996, 8, 1969 https://doi.org/10.1021/cm960070y
  28. Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds; Mineralogical Society: England, 1974
  29. Jitianu, M.; Balasoiu, M.; Marchidan, R.; Zaharescu, M.; Crisan, D.; Craiu, M. Int. J. Inorg. Mater. 2000, 2, 287 https://doi.org/10.1016/S1466-6049(00)00019-2
  30. Fernandez, J. M.; Ulibarri, M. A.; Labajos, F. M.; Rives, V. J. Mater. Chem. 1998, 8, 2507 https://doi.org/10.1039/a804867c
  31. Rhee, S. W.; Kang, M. J.; Moon, H. J. Korean Chem. Soc. 1995, 39(8), 627
  32. Yun, S. K.; Pinnavaia, T. J. Chem. Mater. 1995, 7, 348 https://doi.org/10.1021/cm00050a017
  33. Hibino, T.; Yamashita, Y.; Kosuge, K.; Tsunashima, A. Clay and Clay Miner. 1995, 43, 427 https://doi.org/10.1346/CCMN.1995.0430405
  34. Hansen, H. C. B.; Taylor, R. M. Clay Miner. 1990, 25, 161 https://doi.org/10.1180/claymin.1990.025.2.03
  35. Sato, T.; Fujita, H.; Endo, T.; Shimada, M.; Tsunashima, A. React. Solids 1988, 5, 219 https://doi.org/10.1016/0168-7336(88)80089-5
  36. Sato, T.; Kato, K.; Endo, T.; Shimada, M. React. Solids 1986, 2, 253 https://doi.org/10.1016/0168-7336(86)80088-2
  37. Suzuki, Y.; Muraishi, K.; Ito, H. Thermochimica Acta 1995, 258, 231 https://doi.org/10.1016/0040-6031(94)02240-O

Cited by

  1. Topochemical Oxidation of Transition Metals in Layered Double Hydroxides by Anthraquinone-2-sulfonate vol.33, pp.2, 2012, https://doi.org/10.5012/bkcs.2012.33.2.725
  2. Synthesis, anion-exchange properties, and hydrolytic stability of Mg-Fe(III) layered double hydroxides vol.31, pp.2, 2009, https://doi.org/10.3103/S1063455X09020052
  3. Selective DNA Adsorption on Layered Double Hydroxide Nanoparticles vol.32, pp.7, 2011, https://doi.org/10.5012/bkcs.2011.32.7.2217