DOI QR코드

DOI QR Code

Fluorescence Quenching of Green Fluorescent Protein during Denaturation by Guanidine

  • Jung, Ki-Chul (Department of Chemistry, Chungnam National University) ;
  • Park, Jae-Bok (Department of Chemistry, Chungnam National University) ;
  • Maeng, Pil-Jae (Department of Microbiology, Chungnam National University) ;
  • Kim, Hack-Jin (Department of Chemistry, Chungnam National University)
  • Published : 2005.03.20

Abstract

Fluorescence of green fluorescent protein mutant, 2-5 GFP is observed during denaturation by guanidine. The fluorescence intensity decreases exponentially but the fluorescence lifetime does not change during denaturation. The fluorescence lifetime of the denatured protein is shorter than that of native form. As the protein structure is modified by guanidine, solvent water molecules penetrate into the protein barrel and protonate the chromophore to quench fluorescence. Most fluorescence quenchers do not affect the fluorescence of native form but accelerate the fluorescence intensity decay during denaturation. Based on the observations, a simple model is suggested for the structural change of the protein molecule during denaturation.

Keywords

References

  1. Tsien, R. Annu. Rev. Biochem. 1998, 67, 509 https://doi.org/10.1146/annurev.biochem.67.1.509
  2. Zimmer, M. Chem. Rev. 2002, 102, 759 https://doi.org/10.1021/cr010142r
  3. Chalfie, M.; Tu, Y.; Euskirchen, G.; Ward, W. W.; Prasher, D. C. Science 1994, 263, 802 https://doi.org/10.1126/science.8303295
  4. Yang, F.; Moss, L.; Phillilps, G. Nature Biotechnol. 1996, 14, 1246 https://doi.org/10.1038/nbt1096-1246
  5. Cubitt, A. B.; Heim, R.; Adams, S. R.; Boyd, A. E.; Gross, L. A.; Tsien, R. Y. Trends Biochem. Soc. 1995, 20, 448 https://doi.org/10.1016/S0968-0004(00)89099-4
  6. van Roessel, P.; Brand, A. H. Nature Cell Biology 2002, 4, E15 https://doi.org/10.1038/ncb0102-e15
  7. Ehrhardt, D. Curr. Opin. Plant Biol. 2003, 6, 622 https://doi.org/10.1016/j.pbi.2003.09.014
  8. Ormo, M.; Cubitt, A. B.; Kallio, K.; Gross, L. A.; Tsien, R. Y.; Remington, S. J. Science 1996, 273, 1392 https://doi.org/10.1126/science.273.5280.1392
  9. Heim, R.; Prasher, D. C.; Tsien, R. Y. Proc. Natl. Acad. Sci. USA 1994, 91, 12501
  10. Aune, K. C.; Tanford, C. Biochemistry 1969, 8, 4579 https://doi.org/10.1021/bi00839a052
  11. Mazon, H.; Marcillat, O.; Forest, E.; Smith, D. L.; Vial, C. Biochemistry 2004, 43, 5045 https://doi.org/10.1021/bi049965b
  12. Siemering, K. R.; Golbik, R.; Sever, R.; Haseloff, J. Curr. Biol. 1996, 6, 1653 https://doi.org/10.1016/S0960-9822(02)70789-6
  13. Heim, R.; Cubitt, A. B.; Tsien, R. Y. Nature 1995, 373, 663
  14. Palm, G. J.; Zdanov, A.; Gaitanaris, G. A.; Stauber, R.; Pavlakis, G. N.; Wlodawer, A. Nature Struc. Biol. 1997, 4, 361 https://doi.org/10.1038/nsb0597-361
  15. Prasher, D. C.; Eckenrode, V. K.; Ward, W. W.; Prendergast, F. G.; Cormier, M. J. Gene 1992, 111, 229 https://doi.org/10.1016/0378-1119(92)90691-H
  16. Chattoraj, M.; King, B. A.; Bublitz, G. U.; Boxer, S. G. Proc. Natl. Acad. Sci. USA 1996, 93, 8362
  17. Ward, W. W.; Bokman, S. H. Biochemistry 1982, 21, 4535 https://doi.org/10.1021/bi00262a003
  18. Swaminathan, R.; Hoang, C. P.; Verkman, A. S. Biophysical J. 1997, 72, 1900 https://doi.org/10.1016/S0006-3495(97)78835-0
  19. Kummer, A. G.; Kompa, C.; Niwa, H.; Hirano, T.; Kojima, S.; Michel-Beryerle, M. E. J. Phys. Chem. B 2002, 106, 7554 https://doi.org/10.1021/jp014713v
  20. Yazal, J. E.; Prendergast, F. G.; Shaw, D. E.; Pang, Y.-P. J. Am. Chem. Soc. 2000, 122, 11411 https://doi.org/10.1021/ja0008721
  21. Fukuda, H.; Arai, M.; Kuwajima, K. Biochemistry 2000, 39, 12025 https://doi.org/10.1021/bi000543l
  22. Cubitt, A. B.; Wollenweber, L. A.; Heim, R. Methods Cell Biol. 1999, 6, 19
  23. Beringhelli, T.; Eberini, I.; Galliano, M.; Pedoto, A.; Perduca, M.; Sportiello, A.; Fontana, E.; Monaco, H. L.; Gianazza, E. Biochemistry 2002, 41, 15415 https://doi.org/10.1021/bi020493f
  24. Lee, M.; Park, S. K.; Chung, C.; Kim, H. Bull. Korean Chem. Soc. 2004, 25, 1031 https://doi.org/10.1007/s11814-008-0168-1
  25. Ward, W. W.; Prentice, H. J.; Roth, A. F.; Cody, C. W.; Reeves, S. C. Photochem. Photobiol. 1982, 35, 803 https://doi.org/10.1111/j.1751-1097.1982.tb02651.x
  26. Lackowicz, J. R. Principles of Fluorescence Spectroscopy, 2nd Ed.: Kluwer: New York, 1999

Cited by

  1. GFP's Mechanical Intermediate States vol.7, pp.10, 2012, https://doi.org/10.1371/journal.pone.0046962
  2. Enhanced protein stability through minimally invasive, direct, covalent, and site-specific immobilization vol.29, pp.1, 2013, https://doi.org/10.1002/btpr.1671
  3. Novel transparent poly(silazane) derived solvent-resistant, bio-compatible microchannels and substrates: application in microsystem technology vol.6, pp.9, 2006, https://doi.org/10.1039/b603763c
  4. Fluorescent Protein-Based Optical Biosensor for Copper Ion Quantitation vol.134, pp.3, 2010, https://doi.org/10.1007/s12011-009-8476-9
  5. Use of RNAlater in fluorescence-activated cell sorting (FACS) reduces the fluorescence from GFP but not from DsRed vol.3, pp.1, 2010, https://doi.org/10.1186/1756-0500-3-328
  6. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  7. Site-Specific Incorporation of p-Propargyloxyphenylalanine in a Cell-Free Environment for Direct Protein−Protein Click Conjugation vol.21, pp.2, 2005, https://doi.org/10.1021/bc9002844
  8. FDISCO: Advanced solvent-based clearing method for imaging whole organs vol.5, pp.1, 2005, https://doi.org/10.1126/sciadv.aau8355
  9. Multiphysics modelling of photon, mass and heat transfer in coral microenvironments vol.18, pp.182, 2021, https://doi.org/10.1098/rsif.2021.0532