DOI QR코드

DOI QR Code

Derivation of Cubic and Hexagonal Mesoporous Silica Films by Spin-coating

  • Published : 2005.03.20

Abstract

By introducing spin-coating method to the evaporation induced self-assembly (EISA) process, a simple and reproducible route in controlling the mesophase of silica thin films has been developed for the first time in this work. When a comparatively solvent-rich Si-sol (The atomic ratio of TEOS : F127 : HCl : $H_2O$ : EtOH = 1 : 0.006 : 0.2 : 9.2 : 30) was used as coating solution, the mesophase of resultant silica films was selectively controlled by adjusting the spin-on speed. The cubic mesophase has been obtained from the coating at a low rpm, such as 600 rpm, while the 2-D hexagonal mesophase is formed at a high rpm, such as 2,500 rpm. At a medium coating speed, a mixture of cubic and hexagonal mesophase has been found in the fabricated films. The present results confirm that the evaporation rate of volatile components at initial step is critical for the determination of mesopore structures during the EISA process.

Keywords

References

  1. Yang, H.; Coombs, N.; Sokolov, I.; Ozin, G. A. Nature 1996, 381, 549
  2. Frindell, K. L.; Bartl, M. H.; Popitsch, A.; Stucky, G. D. Angew. Chem. Int. Ed. 2002, 41, 960
  3. Yang, C. M.; Cho, A. T.; Pan, F. M.; Tsai, T. G.; Chao, K. J. Adv. Mater. 2001, 13, 1099 https://doi.org/10.1002/1521-4095(200107)13:14<1099::AID-ADMA1099>3.0.CO;2-0
  4. Coakley, K. M.; Liu, Y.; McGehee, M. D.; Frindell, K. L.; Stucky, G. D. Adv. Func. Mater. 2003, 13, 301 https://doi.org/10.1002/adfm.200304361
  5. Kim, K. Y.; Ahn, W. S.; Park, D. W.; Oh, J. H.; Lee, C. M.; Tai, W. P. Bull. Korean Chem. Soc. 2004, 25, 634 https://doi.org/10.5012/bkcs.2004.25.5.634
  6. Brinker, C. J.; Lu, Y.; Sellinger, A.; Fan, H. Adv. Mater. 1999, 11, 579 https://doi.org/10.1002/(SICI)1521-4095(199905)11:7<579::AID-ADMA579>3.0.CO;2-R
  7. Lu, Y.; Ganguli, R.; Drewien, C. A.; Anderson, M. T.; Brinker, C. J.; Gong, W.; Guo, Y.; Soyez, H.; Dunn, B.; Huang, M. H.; Zink, J. I. Nature 1997, 389, 364 https://doi.org/10.1038/38699
  8. Alonso, B.; Balkenende, A. R.; Albouy, P. A.; Amenitsch, H.; Rager, M.-N.; Babonneau, F. J. Sol-Gel Sci. Tech. 2003, 26, 587 https://doi.org/10.1023/A:1020776121896
  9. Shen, S.; Tian, B.; Yu, C.; Xie, S.; Zhang, Z.; Tu, B.; Zhao, D. Chem. Mater. 2003, 15, 4046 https://doi.org/10.1021/cm0342389
  10. Zhao, D.; Yang, P.; Melosh, N.; Feng, J.; Chmelka, B. F.; Stucky, G. D. Adv. Mater. 1998, 10, 1380 https://doi.org/10.1002/(SICI)1521-4095(199811)10:16<1380::AID-ADMA1380>3.0.CO;2-8
  11. Besson, S.; Ricolleau, C.; Gacoin, T.; Jacquiod, C.; Boilot, J.-P. J. Phys. Chem. B 2000, 104, 12095 https://doi.org/10.1021/jp0026538
  12. Gibaud, A.; Grosso, D.; Smarsly, B.; Baptiste, A.; Bardeau, J. F.; Babonneau, F.; Doshi, D. A.; Chen, Z.; Brinker, C. J.; Sanchez, C. J. Phys. Chem. B 2003, 107, 6114 https://doi.org/10.1021/jp027612l
  13. Honma, I.; Zhou, H. S.; Kundu, D.; Endo, A. Adv. Mater. 2000, 12, 1529 https://doi.org/10.1002/1521-4095(200010)12:20<1529::AID-ADMA1529>3.0.CO;2-U
  14. Alberius, P. C. A.; Frindell, K. L.; Hayward, R. C.; Kramer, E. J.; Stucky, G. D.; Chmelka, B. F. Chem. Mater. 2002, 14, 3284 https://doi.org/10.1021/cm011209u
  15. Soler-Illia, G. J. A. A.; Crepaldi, E. L.; Grosso, D.; Sanchez, C. Curr. Opin. Colloid Interface Sci. 2003, 8, 109 https://doi.org/10.1016/S1359-0294(03)00002-5
  16. Soler-Illia, G. J. A. A.; Crepaldi, E. L.; Grosso, D.; Durand, D.; Sanchez, C. Chem. Comm. 2002, 20, 2298
  17. Grosso, D.; Cagnol, F.; Soler-Illia, G. J. A. A.; Crepaldi, E. L.; Amenitsch, H.; Brunet-Bruneau, A.; Bourgeois, A.; Sanchez, C. Adv. Func. Mater. 2004, 14, 309 https://doi.org/10.1002/adfm.200305036
  18. Grosso, D.; Balkenende, A. R.; Albouy, P. A.; Amenitsch, H.; Babonneau, F. Chem. Mater. 2001, 13, 1848 https://doi.org/10.1021/cm001225b
  19. Soler-Illia, G. J. A. A.; Crepaldi, E. L.; Grosso, D.; Sanchez, C. J. Mater. Chem. 2004, 14, 1879 https://doi.org/10.1039/b316033e
  20. Yun, H.; Miyazawa, K.; Zhou, H.; Honma, I.; Kuwabara, M. Adv. Mater. 2001, 13, 1377 https://doi.org/10.1002/1521-4095(200109)13:18<1377::AID-ADMA1377>3.0.CO;2-T
  21. Bae, J. Y.; Park, O.-H.; Jung, J.-I.; Ranjit, K. T.; Bae, B.-S. Micropor. Mesopor. Mater. 2004, 67, 265 https://doi.org/10.1016/j.micromeso.2003.11.011
  22. Cohen, Y.; Hatton, B.; Miguez, H.; Coombs, N.; Fournier-Bidoz, S.; Grey, J. K.; Beaulac, R.; Reber, C.; Ozin, G. A. Adv. Mater. 2003, 15, 572 https://doi.org/10.1002/adma.200304491
  23. Huo, Q.; Margolese, D. I.; Stucky, G. D. Chem. Mater. 1996, 8, 1147 https://doi.org/10.1021/cm960137h
  24. Gallis, K. W.; Landry, C. C. Chem. Mater. 1997, 9, 2035 https://doi.org/10.1021/cm970482m

Cited by

  1. Synthesis and characterization of lamellar-structured silica thin films with high thermal stability greater than 450 °C vol.21, pp.11, 2011, https://doi.org/10.1039/c0jm03485a
  2. Critical effect of sol ageing conditions on thermal stability and organization of titania mesoporous powder vol.41, pp.4, 2015, https://doi.org/10.1007/s11164-013-1329-3
  3. Mesoporous Thin Films with Accessible Pores from Surfaces vol.27, pp.6, 2006, https://doi.org/10.5012/bkcs.2006.27.6.808
  4. Control of TiO2 Structures from Robust Hollow Microspheres to Highly Dispersible Nanoparticles in a Tetrabutylammonium Hydroxide Solution vol.23, pp.19, 2005, https://doi.org/10.1021/la700797v
  5. Block copolymer-templated synthesis of highly organized mesoporous TiO2-based films and their photoelectrochemical applications vol.170, pp.2, 2005, https://doi.org/10.1016/j.cej.2010.11.040
  6. Effect of nickel on combustion synthesized copper/fumed‐SiO2 catalyst for selective reduction of CO2 to CO vol.46, pp.1, 2022, https://doi.org/10.1002/er.6586