DOI QR코드

DOI QR Code

Epoxidation of Simple Alkenes with O2 and Isobutyraldehyde Catalyzed by Ni Catalysts Deposited on Nanoporous Carbon

  • Lim, So-Young (Department of Chemistry, Inha Univeristy) ;
  • Kang, Min (Functional Materials Laboratory, Department of Molecular Science and Technology, Ajou University) ;
  • Kim, Ji-Man (Department of Chemistry, Sungkyunkwan University) ;
  • Lee, Ik-Mo (Department of Chemistry, Inha Univeristy)
  • Published : 2005.06.20

Abstract

Novel nickel catalyst deposited on nanoporous carbon was found to be an efficient catalyst for the epoxidation of simple alkenes with $O_2$ and isobutyraldehyde under mild conditions. Alkenes exhibited different reactivities towards Ni-catalyst and epoxidation with stilbene proceeds stereospecifically. This may be rationalized with the mechanism involving coordinated acylperoxy radical intermediate. Nickel contents depend on the preparative methods and the KNI-3 catalyst, which was synthesized by wet impregnation of $Ni(NO_3)_2$ into nanoporous carbon, shows the highest activity. The activity of the catalyst is well correlated with contents of nickel. Recycled catalysts suffer considerable loss of activity due to leaching of catalytic active species, nickel.

Keywords

References

  1. Proc. 6th Int. Symp. Activation of Dioxygen, J. Mol. Catal. A: Chem. 1997, 117, 1-489 https://doi.org/10.1016/S1381-1169(97)00025-3
  2. Jorgenson, K. A. Chem. Rev. 1989, 89, 431 https://doi.org/10.1021/cr00093a001
  3. Weissermel, K.; Arpe, H. J. In Industrial Organic Chemistry; Wiley: New York, 2003
  4. Pozzi, G.; Cinato, F.; Montanari, F.; Quici, S. Chem. Commun. 1998, 877
  5. Jeong, Y. C.; Choi, S. H.; Yu, K. A.; Ahn, K. H. Bull. Korean Chem. Soc. 2003, 24(5), 537 https://doi.org/10.1007/s11814-007-0095-6
  6. Park, S. W.; Kim, K. J.; Yoon, S. S. Bull. Korean Chem. Soc. 2000, 21(4), 446
  7. Sheldon, R. A. In Applied Homogeneous Catalysis with Organometallic Compounds, 2nd ed.; Cornils, B.; Herrmann, W. A., Eds.; VCH: Weinheim, Germany, 2002; vol. 1, pp 412-427
  8. Dinda, S.; Chowdhury, S. R.; Abdul Malik, K. M.; Bhattacharyya, R. Tetrahedron Lett. 2005, 46, 339 and references therein https://doi.org/10.1016/j.tetlet.2004.10.163
  9. Laine, B. S.; Burgess, K. Chem. Rev. 2003, 103, 2457 https://doi.org/10.1021/cr020471z
  10. Yang, S. J.; Lee, H. J.; Nam, W. W. Bull. Korean Chem. Soc. 1998, 19(3), 276
  11. Choi, S. K.; Lee, H. J.; Kim, H. R.; Nam, W. W. Bull. Korean Chem. Soc. 2002, 23(7), 1039 https://doi.org/10.5012/bkcs.2002.23.7.1039
  12. Deubel, D. V.; Frenking, G.; Gisdakis, P.; Herrmann, W. A.; Roesch, N.; Sundermeyer, J. Acc. Chem. Res. 2004, 37, 645 https://doi.org/10.1021/ar0400140
  13. Mukaiyama, T. Aldrichimica Acta 1996, 29, 59
  14. Wentzel, B. B.; Gosling, P. A.; Feiters, M. C.; Nolte, R. J. M. J. Chem. Soc., Dalton Trans. 1998, 2241
  15. Fdil, N.; Romane, A.; Allaoud, S.; Karim, A.; Castanet, Y.; Mortreux, A. J. Mol. Catal. A: Chem. 1996, 108, 15 https://doi.org/10.1016/1381-1169(95)00284-7
  16. O'Neill, P. M.; Hindley, S.; Pugh, M. D.; Davies, J.; Bray, P. G.; Park, B. K.; Kapu, D. S.; Ward, S. A.; Stocks, P. A. Tetrahedron Lett. 2003, 44, 8135 https://doi.org/10.1016/j.tetlet.2003.09.033
  17. Mukaiyama, T.; Yamada, T.; Nagata, T.; Imagawa, K. Chem. Lett. 1993, 327
  18. Takai, T.; Hata, E.; Yamada, T.; Mukaiyama, T. Bull. Chem. Soc. Jpn. 1991, 64, 2513 https://doi.org/10.1246/bcsj.64.2513
  19. Takai, T.; Hata, E.; Yorozu, K.; Mukaiyama, T. Chem. Lett. 1992, 2077
  20. Kureshy, R. I.; Khan, N. H.; Abdi, S. H. R.; Bhatt, A. K.; Iyer, P. J. Mol. Catal. A 1997, 121, 25 https://doi.org/10.1016/S1381-1169(96)00452-9
  21. Mukaiyama, T.; Yamada, Y.; Nagata, T.; Imagawa, K. Chem. Lett. 1993, 327
  22. Groves, J. T.; Quinn, R. J. J. Am. Chem. Soc. 1985, 107, 5790 https://doi.org/10.1021/ja00306a029
  23. Kesavan, V.; Chandrasekaran, S. J. Chem. Soc., Perkin Trans. 1 1997, 3115
  24. Kesavan, V.; Chandrasekaran, S. J. Org. Chem. 1998, 63, 6999 https://doi.org/10.1021/jo980829k
  25. Sherrington, D. C. Catal. Today 2000, 57, 87 https://doi.org/10.1016/S0920-5861(99)00311-9
  26. Das, B. C.; Iqbal, J. Tetrahedron Lett. 1997, 38, 12 https://doi.org/10.1016/S0040-4039(97)00045-2
  27. Prabhakaran, E. N.; Nandi, J. P.; Iqbal, J. Tetrahedron Lett. 2001, 42, 333 https://doi.org/10.1016/S0040-4039(00)01949-3
  28. Han, X.; Lei, Z. Pure Appl. Chem. 1999, 36, 1337
  29. Wentzel, B. B.; Leinonen, S.-M.; Thomson, S.; Sherrington, D. C.; Feiters, M. C.; Nolte, R. J. M. J. Chem. Soc., Perkin Trans. 1 2000, 3428
  30. Dhar, D.; Koltypin, Y.; Gedanken, A.; Chandrasekaran, S. Catalysis Lett. 2003, 86, 197 https://doi.org/10.1023/A:1022659817183
  31. Zhang, X.; Li, Z. H.; Wang, J.; Huang, M. Y.; Jiang, Y. Y. Polym. Adv. Technol. 1999, 10, 483 https://doi.org/10.1002/(SICI)1099-1581(199908)10:8<483::AID-PAT893>3.0.CO;2-J
  32. Jun, S.; Joo, S. H.; Ryoo, R.; Kruk, M.; Jaroniec, M.; Liu, Z.; Ohsuna, T.; Terasaki, O. J. Am. Chem. Soc. 2000, 122, 10712 https://doi.org/10.1021/ja002261e
  33. Kang, M.; Yi, S. H.; Lee, H. I.; Yie, J. E.; Kim, J. M. Chem. Commun. 2002, 1944
  34. Yamada, T.; Imagawa, K.; Mukaiyama, T. Chem. Lett. 1991, 1
  35. Fernandez, I.; Pedro, J. R.; Rosello, A. L.; Ruiz, R.; Ottenwaelder, X.; Journaux, Y. Tetrahedron Lett. 1998, 39, 2869 https://doi.org/10.1016/S0040-4039(98)00321-9
  36. Nam, W.; Kim, H. J.; Kim, S. I.; Ho, R. Y. N.; Valetine, J. S. Inorg. Chem. 1996, 35, 1045 https://doi.org/10.1021/ic950782a

Cited by

  1. Immobilized into Montmorillonite Mn(II) Complexes of Novel Pyridine Schiff-Base Ligands and Their Catalytic Reactivity in Epoxidation of Cyclohexene with O2 vol.143, pp.6, 2013, https://doi.org/10.1007/s10562-013-1002-x
  2. Epoxidation of Cyclohexene With H2O2 and Acetonitrile Catalyzed by Mg–Al Hydrotalcite and Cobalt Modified Hydrotalcites vol.134, pp.3-4, 2010, https://doi.org/10.1007/s10562-009-0238-y
  3. Epoxidation of Simple Alkenes with O2 and Isobutyraldehyde Catalyzed by Ni Catalysts Deposited on Nanoporous Carbon. vol.36, pp.47, 2005, https://doi.org/10.1002/chin.200547101
  4. Rational design of ordered mesoporous carbon with controlled bimodal porosity via dual silica templating route vol.2005, pp.48, 2005, https://doi.org/10.1039/b511423c
  5. Preparation and application of chelating polymer–mesoporous carbon composite for copper-ion adsorption vol.47, pp.4, 2005, https://doi.org/10.1016/j.carbon.2008.12.024
  6. Epoxidation of cyclohexene with O2 and isobutyraldehyde catalysed by cobalt modified hydrotalcites vol.315, pp.2, 2010, https://doi.org/10.1016/j.molcata.2009.09.009
  7. Nanoaggregates of Mn(III)tetraperfluorophenylporphyrin: a greener approach for allylic oxidation of olefins vol.15, pp.11, 2005, https://doi.org/10.1142/s1088424611004130
  8. Epoxidation of cyclohexene with O2 over the composite catalysts of Mn-montmorillonite coordinated with novel Schiff-base ligands vol.3, pp.43, 2013, https://doi.org/10.1039/c3ra42749h
  9. Convenient and Mild Epoxidation of Alkenes Using Heterogeneous Cobalt Oxide Catalysts vol.126, pp.17, 2005, https://doi.org/10.1002/ange.201310420
  10. Convenient and Mild Epoxidation of Alkenes Using Heterogeneous Cobalt Oxide Catalysts vol.53, pp.17, 2014, https://doi.org/10.1002/anie.201310420
  11. A Facile Synthesis of Molybdenum‐Promoted Reduced Graphene Oxide as Catalyst towards Epoxidation of Cyclohexene vol.4, pp.19, 2005, https://doi.org/10.1002/slct.201803885
  12. Instant and quantitative epoxidation of styrene under ambient conditions over a nickel(II)dibenzotetramethyltetraaza[14]annulene complex immobilized on amino-functionalized SBA-15 vol.10, pp.58, 2005, https://doi.org/10.1039/d0ra07244c
  13. Flavor-Toxicant Correlation in E-cigarettes: A Meta-Analysis vol.33, pp.12, 2020, https://doi.org/10.1021/acs.chemrestox.0c00247
  14. Soft synthesis and characterization of goethite-based nanocomposites as promising cyclooctene oxidation catalysts vol.11, pp.44, 2021, https://doi.org/10.1039/d1ra04211d