DOI QR코드

DOI QR Code

Development of a New Copper(II) Ion-selective Poly(vinyl chloride) Membrane Electrode Based on 2-Mercaptobenzoxazole

  • Published : 2005.06.20

Abstract

Copper(II) ion-selective PVC membrane electrode based on 2-mercaptobenzoxazole as a new ionophore and o-nitrophenyl octyl ether (o-NPOE) as plasticizer is proposed. This electrode revealed good selectivity for $Cu^{2+}$ over a wide variety of other metal ions. Effects of experimental parameters such as membrane composition, nature and amount of plasticizer, and concentration of internal solution on the potential response of $Cu^{2+}$ sensor were investigated. The electrode exhibits good response for $Cu^{2+}$ in a wide linear range of 5.0 ${\times}$ 10−.6-1.6 ${\times}$ $10^{-2}$ mol/L with a slope of 29.2 ${\pm}$ 2.0 mV/decade. The response time of the sensor is less than 10 s, and the detection limit is 2.0 ${\times}$ $10^{-6}$ mol/L. The electrode response was stable in pH range of 4-6. The lifetime of the electrode was about 2 months. The electrode revealed comparatively good selectivities with respect to many alkali, alkaline earth, and transition metal ions.

Keywords

References

  1. Ammann, D.; Morf, W. E.; Anker, P.; Meier, P. C.; Pretsch, E.; Simon, W. Ion-Selective Electrode Rev. 1983, 5, 3 https://doi.org/10.1016/B978-0-08-031492-1.50005-X
  2. Arnold, M. A.; Meyerhoff, M. E. Crit. Rev. Anal. Chem. 1988, 20, 149 https://doi.org/10.1080/00078988808048811
  3. Janata, J.; Josowics, M.; Vanysek, P.; Devancy, D. M. Anal. Chem. 1998, 70, 179 R https://doi.org/10.1021/a1980010w
  4. Buhlmann, P.; Pretsch, E.; Bakker, E. Chem. Rev. 1998, 98, 1593 https://doi.org/10.1021/cr970113+
  5. Bakker, E.; Buhlmann, P.; Pretsch, E. Chem. Rev. 1997, 97, 3083 https://doi.org/10.1021/cr940394a
  6. Antonisse, M. M. G.; Reinhoudt, D. N. Electroanalysis 1999, 11, 1035 https://doi.org/10.1002/(SICI)1521-4109(199910)11:14<1035::AID-ELAN1035>3.0.CO;2-I
  7. Aamrani, F. El; Garcia-Raurich, J.; Sastre, A.; Beyer, L.; Florido, A. Anal. Chim. Acta 1999, 402, 129 https://doi.org/10.1016/S0003-2670(99)00562-0
  8. Fathi, M. R.; Darviche, F.; Ganjali, M. R. Anal. Lett. 2000, 30, 1025
  9. Mousavi, M. F.; Sahari, S.; Alizadeh, N.; Shamsipur, M. Anal. Chim. Acta 2000, 414, 189 https://doi.org/10.1016/S0003-2670(00)00818-7
  10. Shamsipur, M.; Rouhani, S.; Ganjali, M. R.; Eshghi, H.; Sharghi, H. Sens. Actuat. B 1999, 59, 30 https://doi.org/10.1016/S0925-4005(99)00160-4
  11. Shamsipur, M.; Yousefi, M.; Ganjali, M. R. Anal. Chem. 2000, 72, 2391 https://doi.org/10.1021/ac991155w
  12. Rouhollahi, A.; Shamsipur, M. Anal. Chem. 1999, 71, 1350 https://doi.org/10.1021/ac981077x
  13. Greenwood, N. N.; Earnshow, A. Chemistry of Elements; Pergamon Press: New York, 1984
  14. Kamata, S.; Yamasaki, Y.; Higo, M.; Bhale, A.; Fukamaga, Y. Analyst 1988, 113, 45 https://doi.org/10.1039/an9881300045
  15. Casabo, J.; Mestres, L.; Escriche, L.; Texidor, F.; Perez-Jimenez, C. J. Chem. Soc. Dalton Trans. 1991, 1969
  16. Abbaspour, A.; Kamyabi, M. A. Anal. Chim. Acta 2002, 455, 225 https://doi.org/10.1016/S0003-2670(01)01622-1
  17. Kamata, S.; Murata, H.; Kubo, Y.; Bhale, A. Analyst 1989, 114, 1029 https://doi.org/10.1039/an9891401029
  18. Cobben, P. L. H. M.; Egberink, R. J. M.; Bomer, J. G.; Bergveld, P.; Verboom, W.; Reinhoudt, D. N. J. Am. Chem. Soc. 1992, 114, 10573 https://doi.org/10.1021/ja00052a063
  19. Alizadeh, N.; Ershad, S.; Naeimi, H.; Sharghi, H.; Shamsipur, M. Fresenius J. Anal. Chem. 1999, 365, 511 https://doi.org/10.1007/s002160051514
  20. Framt, M. Analyst 1990, 119, 2293 https://doi.org/10.1039/an9941902293
  21. Van Allan, J. A.; Deacon, B. D. Org. Synth. 1963, IV, 569
  22. Lonakina, L. N.; Ignateva, T. I.; Busev, A. I. Zh. Anal. Kim. 1978, 11, 527
  23. Vogel, A. I. A Testbook of Quantitative Inorganic Analysis, 3rd ed; Longman: London, 1961
  24. Tavakkoli, N.; Shamsipur, M. Anal. Lett. 1996, 29, 2269 https://doi.org/10.1080/00032719608002251
  25. Craggs, A.; Moody, G. J.; Thomas, J. D. R. J. Chem. Edu. 1974, 51, 541 https://doi.org/10.1021/ed051p541
  26. Moody, G. J.; Oke, R. B.; Thomas, J. D. R. Analyst 1970, 95, 910 https://doi.org/10.1039/an9709500910
  27. Umezawa, Y. Anal. Chem. 1982, 54, 1198 https://doi.org/10.1021/ac00244a043
  28. Guilbault, G. G.; Durst, R. A.; Freiser, H. Pure Appl. Chem. 1976, 48, 127 https://doi.org/10.1351/pac197648010127
  29. Umezawa, Y.; Umezawa, K.; Sato, H. Pure Appl. Chem. 1995, 67, 507 https://doi.org/10.1351/pac199567030507
  30. Bakker, E. Electroanalysis 1997, 9, 7 https://doi.org/10.1002/elan.1140090103

Cited by

  1. Construction of Suitable Iodide–Selective Electrode Based on Phenyl Mercury (II)(2‐mercaptobezothiozolate) Carrier vol.40, pp.9, 2007, https://doi.org/10.1080/00032710701298602
  2. Developments in the Field of Conducting and Non-conducting Polymer Based Potentiometric Membrane Sensors for Ions Over the Past Decade vol.8, pp.4, 2008, https://doi.org/10.3390/s8042331
  3. Development of an electrochemical sensor based on Schiff base for Cu(II) determination at nano level in river water and edible materials vol.89, pp.15, 2009, https://doi.org/10.1080/03067310902719167
  4. Influence of Multiwalled Carbon Paste Nanotubes on Response of ${\rm Pb}^{2+}$ Ion Selective Carbon Paste Electrode Based on 2-((6-(5-Bromo-2-Hydroxybenzylideneamino) Hexylimino) Methyl)-4-Bromophenol as Novel Neutral Carrier vol.11, pp.10, 2011, https://doi.org/10.1109/JSEN.2011.2126042
  5. Synthesis and Application of New Porphyrin Derivatives for Preparation of Copper Selective Electrodes: Influence of Carbon Nanotube on Their Responses vol.12, pp.8, 2012, https://doi.org/10.1109/JSEN.2012.2187333
  6. Acetohydrazide Derivative for Selective Separation and Preconcentration of Cu(II) Ions by Coprecipitation Method Without Using a Carrier Element vol.45, pp.5, 2012, https://doi.org/10.1080/00387010.2012.666698
  7. Potentiometric and Spectrophotometric Studies of Copper(II) Complexes of Some Ligands in Aqueous and Nonaqueous Solution vol.54, pp.4, 2013, https://doi.org/10.1002/jccs.200700134
  8. Novel Screen-Printed All-Solid-State Copper(II)-Selective Electrode for Mobile Environmental Analysis vol.07, pp.07, 2016, https://doi.org/10.4236/ajac.2016.77048
  9. Application of 2-(benzyliminomethyl)-6-methoxy-4-(4-methoxyphenyl-azo)phenol in construction of ion-selective PVC membrane electrode for determination of copper (II) in mineral water sample pp.02682605, 2017, https://doi.org/10.1002/aoc.4040
  10. Mercury selective membrane electrode based on dithio derivatized macrotricyclic compound vol.64, pp.1-2, 2009, https://doi.org/10.1007/s10847-009-9541-x
  11. Synthesis of a New Hexadendates Schiff's Base and Its Application in the Fabrication of a Highly Selective Mercury(II) Sensor vol.28, pp.1, 2005, https://doi.org/10.5012/bkcs.2007.28.1.068
  12. Synthesis and Binding Properties of 1,3,5-Tris(2-arylthiomethyl)mesitylene: A Selective Ag (I) Ionophore vol.29, pp.2, 2005, https://doi.org/10.5012/bkcs.2008.29.2.417
  13. Evaluation of copper speciation in model solutions of humic acid by mini-columns packed with Chelex-100 and new chelating agents: Application to speciation of selected heavy metals in environmental wa vol.172, pp.2, 2005, https://doi.org/10.1016/j.jhazmat.2009.07.119
  14. Poly(vinyl) chloride membrane copper-selective electrode based on 1-phenyl-2-(2-hydroxyphenylhydrazo)butane-1,3-dione vol.186, pp.2, 2005, https://doi.org/10.1016/j.jhazmat.2010.11.119
  15. Construction of new iodide selective electrodes based on bis(trans-cinnamaldehyde)1,3-propanediimine(L) zinc(II) chloride [ZnLCl2] and bis(trans-cinnamaldehyde) 1,3-propanediimine(L) cadmiu vol.32, pp.3, 2012, https://doi.org/10.1016/j.msec.2011.12.004
  16. Potentiometric detection and removal of copper using porphyrins vol.7, pp.None, 2005, https://doi.org/10.1186/1752-153x-7-111
  17. Hydrolysis of Glycosyl Thioimidates by Glycoside Hydrolase Requires Remote Activation for Efficient Activity vol.9, pp.10, 2019, https://doi.org/10.3390/catal9100826