Unified Parametric Approaches for Observer Design in Matrix Second-order Linear Systems

  • Wu Yun-Li (Center for Control Theory and Guidance Technology, Harbin Institute for Technology) ;
  • Duan Guang-Ren (Center for Control Theory and Guidance Technology, Harbin Institute for Technology)
  • Published : 2005.06.01

Abstract

This paper designs observers for matrix second-order linear systems on the basis of generalized eigenstructure assignment via unified parametric approach. It is shown that the problem is closely related with a type of so-called generalized matrix second-order Sylvester matrix equations. Through establishing two general parametric solutions to this type of matrix equations, two unified complete parametric methods for the proposed observer design problem are presented. Both methods give simple complete parametric expressions for the observer gain matrices. The first one mainly depends on a series of singular value decompositions, and is thus numerically simple and reliable; the second one utilizes the right factorization of the system, and allows eigenvalues of the error system to be set undetermined and sought via certain optimization procedures. A spring-mass system is utilized to show the effect of the proposed approaches.

Keywords

References

  1. M. J. Balas, 'Trends in large space structure control theory: fondest hopes,' IEEE Trans. on Automatic Control, vol. 27, no. 3, pp. 522-535, June 1982 https://doi.org/10.1109/TAC.1982.1102953
  2. A. Bhayah and C. Desoer, 'On the design of large flexible space structures (LFSS),' IEEE Trans. on Automatic Control, vol. 30, no. 11, pp. 1118-1120, November 1985 https://doi.org/10.1109/TAC.1985.1103847
  3. A. M. Diwekar and R. K. Yedavalli, 'Smart structure control in matrix second-order form,' Smart Materials and Structures, vol. 5, pp.429- 436, 1996 https://doi.org/10.1088/0964-1726/5/4/006
  4. A. M. Diwekar and R. K. Yedavalli, 'Stability of matrix second-order systems: new conditions and perspectives,' IEEE Trans. on Automatic Control, vol. 44, no. 9, pp. 1773-1777, September 1999 https://doi.org/10.1109/9.788551
  5. B. N. Datta, and F. Rincon, 'Feedback stabilization of a second-order system: a nonmodal approach,' Linear Algebra Applications, vol. 188/189, pp. 135-161, 1993 https://doi.org/10.1016/0024-3795(93)90467-3
  6. G. R. Duan and G. P. Liu, 'Complete parametric approach for eigenstructure assignment in a class of second-order linear systems,' Automatica, vol. 38, pp. 725-729, 2002 https://doi.org/10.1016/S0005-1098(01)00251-5
  7. N. K. Nichols and J. Kautsky, 'Robust eigenstructure assignment in quadratic matrix polynomials: nonsingular case,' SIAM Journal on Matrix Analysis and Applications, vol. 23, no. 1, pp. 77-102, 2001 https://doi.org/10.1137/S0895479899362867
  8. P. C. Hughes and R. E. Skelton, 'Controllability and observability of linear matrix second-order system,' Journal of Applied Mechanics, vol. 47, no. 2, pp. 415-421, June 1980 https://doi.org/10.1115/1.3153679
  9. A. J. Laub and W. F. Arnold, 'Controllability and observability criteria for multivariable linear second-order model,' IEEE Trans. on Automatic Control, vol. 29, no. 2, pp. 163-165, February 1984 https://doi.org/10.1109/TAC.1984.1103470
  10. S.-K. Kwak and R. K. Yedavalli, 'New approaches for observer design in linear matrix second order systems,' Proc. of the American Control Conference, pp. 2311-2315, 2000
  11. M. A. Demetriou, 'UIO for fault detection in vector second order systems,' Proc. of the American Control Conference, Arlington, VA, pp. 1121-1126, June 25-27, 2001
  12. G. R. Duan, L. S. Zhou, and Y. M. Xu, 'A parametric approach for observer-based control system design,' Proc. of the Asia-Pacific Conf. Measurement and Control, Guangzhou, PR China, pp. 259-300, 1991
  13. G. R. Duan, 'On the solution to Sylvester matrix equation AV+BW=EVF,' IEEE Trans. on Automatic Control, vol. 41, no. 4, pp. 612-614, April 1996 https://doi.org/10.1109/9.489286
  14. G. R. Duan, 'Solution of matrix equation AV+BW=EVF and eigenstructure assignment for descriptor systems,' Automatica, vol. 28, no. 3, pp. 639-643, 1992 https://doi.org/10.1016/0005-1098(92)90191-H
  15. T. G. J. Beelen and G. W. Veltkamp, 'Numerical computation of a coprime factorization of a transfer-function matrix,' Syst. Control Lett., vol. 9, no. 3, pp. 281-288, 1987 https://doi.org/10.1016/0167-6911(87)90052-1
  16. K. B. Datta and S. Gangopadhyay, 'Reduction of transfer functions to coprime forms,' Control Theory Adv. Technol., vol. 7, pp. 321-334, 1991