DOI QR코드

DOI QR Code

Effect of Ambient Gas to Growth of SiO2 Nanowires by Vapor Evaporation Method

기상휘발법에 의한 이산화규소 나노와이어의 성장에 미치는 가스의 영향

  • Rho Dae-Ho (Korea University, Department of Materials Science and Engineering) ;
  • Kim Jae-Soo (Korea Institute of Science and Technology, Metal Processing Research Center) ;
  • Byun Dong-Jin (Korea University, Department of Materials Science and Engineering) ;
  • Lee Jae-Hoon (Korea Institute of Industrial Technology, Advanced Materials Center) ;
  • Yang Jae-Woong (Dajin University, Department of Advanced Materials Science and Technology) ;
  • Kim Na-Ri (Korea University, Department of Materials Science and Engineering)
  • 노대호 (고려대학교 재료공학과) ;
  • 김재수 (한국과학기술연구원 금속공정연구센터) ;
  • 변동진 (고려대학교 재료공학과) ;
  • 이재훈 (생산기술연구원 신소재본부) ;
  • 양재웅 (대진대학교 신소재공학과) ;
  • 김나리 (고려대학교 재료공학과)
  • Published : 2005.05.01

Abstract

Effects of gases to growth of $SiO_2$ nanowires were characterized. $N_2$, Ar, and $O_2$ gas's effect were determined. $SiO_2$ nanowires growth scheme was varied by kind and flow rates of gases because of amounts of $O_2$. Flow rates of gases and kind of substrates affected nanowires' diameters, lengths and morphologies of grown nano wires. With increasing flow rates of gases, nanowire's diameter increased because of additional VS and SLS reactions. By TEM characterization, We knows that, grown $SiO_2$ nanowires on Si substrate showed two shell structures. These shapes of nanowires were formed by reaction of additional SLS growth. Grown $SiO_2$ nanowires showed blue luminescence by PL characterization These Blue luminescence was due to quantum confinement effect and oxygen vacancies in the nanowires.

Keywords

References

  1. D. H. Rho, J. S. Kim, D. J. Byun, J. H. Lee, J. W. Yang and N. R. Kim, Kor. J. Mater. Res., 14, 482 (2004) https://doi.org/10.3740/MRSK.2004.14.7.482
  2. Z. L. Wang, R. P. Ga, Z. L. Gole and J. D. Stout. Adv, Mater., 12, 1938 (2000) https://doi.org/10.1002/1521-4095(200012)12:24<1938::AID-ADMA1938>3.0.CO;2-4
  3. T. V. Tirchnska, M. M. Rodriquez, A. V. Hemadez and K. W. Cheah, J. Luminescence, 102, 551 (2003) https://doi.org/10.1016/S0022-2313(02)00604-X
  4. T. V. Tirchnska, M. M. Rodriquez and L. Y. Khomenkova, Surface Science, 532, 1204 (2003) https://doi.org/10.1016/S0039-6028(03)00483-7
  5. D. P. Yu, Q. L. Hong, Y. Ding, H. Z. Zhang, Z. G. Bai, J. J. wang, Y. H. Zou, W. Qian, G. G. Xiong and S. Q. Feng, Appl. Phys. Lett., 73, 3076 (1988) https://doi.org/10.1063/1.122677
  6. X. C. Wu, W. H. Song, K. Y. Wang, T. Hu, B. Zhao, Y. P. Sun and J. J. Du, Chem. Phys. Lett., 336(1), 53 (2001) https://doi.org/10.1016/S0009-2614(01)00063-X
  7. D. H. Rho, J. S. Kim, D. J. Byun, J. W. Yang and N. R. Kim, Kor. J. Mater. Res., 13, 404 (2003) https://doi.org/10.3740/MRSK.2003.13.6.404
  8. H. Takikawa, M. Yatsuki and T. Sakakibara, Jpn. J. Appl. Phys., 38, L401 (1999) https://doi.org/10.1143/JJAP.38.L401
  9. Z. W. Pan, Z. R. Dai, C. Ma and Z. L. wang, J. Am. Chem. Soc., 124, 1817 (2002) https://doi.org/10.1021/ja017284n
  10. E. I. Givargizov, J. Cryst. Gr., 31, 20 (1975) https://doi.org/10.1016/0022-0248(75)90105-0
  11. Y. Dai, Y. Zhang, Y. Q. bai and Z. L. Wang, Chem. Phys. Lett., 375, 96 (2003) https://doi.org/10.1016/S0009-2614(03)00823-6
  12. X. Chen, C. Au, J. Lin, X. Wang and Y. Qian, J. Cryst. Gr., 253, 357 (2003) https://doi.org/10.1016/S0022-0248(03)01088-1
  13. S. R. Nutt, J. Am. Ceram. Soc., 71, 149 (1988) https://doi.org/10.1111/j.1151-2916.1988.tb05021.x
  14. K. M. Knowels and M. V. Ravichandran, J. Am. Ceram. Soc., 80, 1165 (1997) https://doi.org/10.1111/j.1151-2916.1997.tb02959.x
  15. Y. Yao, S. T. Lee and F. H. Li, Chem. l Phys. Lett., 381, 628 (2003) https://doi.org/10.1016/j.cplett.2003.09.149
  16. Q. Hu, G. Li, H. Suzuki, H. Araki, N. Ishikawa, W. Yang and T. Noda, J. Cryst. Gr., 246, 64 (2002) https://doi.org/10.1016/S0022-0248(02)01792-X
  17. B. K. Teo, C. P. Li, X. H. Sun, N. B. Wong and S. T. Lee, Inorg. Chem., 42, 6723 (2003) https://doi.org/10.1021/ic034397u
  18. B. C. Satishkimar, P. J.Tomas, A. Govindaraj and C. N. R. Rao, Appl. Phys. Lett., 77, 2530 (2000) https://doi.org/10.1063/1.1319185
  19. D. H. Rho, J. S. Kim, D. J. Byun, J. W. Yang and N. R. Kim, Kor. J. Mater. Res., 13, 677 (2003) https://doi.org/10.3740/MRSK.2003.13.10.677
  20. J. J. Wu, T. C. Weng and C. C, Yu, Adv. Mater., 14, 1643 (2002) https://doi.org/10.1002/1521-4095(20021118)14:22<1643::AID-ADMA1643>3.0.CO;2-Y
  21. D. D. D. Ma, C. S. Lee, F.C. K. Au, S.Y. Tong and S. Y. Lee, Science, 299, 1874 (2003) https://doi.org/10.1126/science.1080313
  22. B. K. Teo, C. P. Li, X. H. Sun, N. B. Wong and S. T. Lee, Inorg. Chem., 42, 6723 (2003) https://doi.org/10.1021/ic034397u
  23. H. Nishikawa, T. Shrioyama, R. Nakamura, Y. Ohiki, K. Nagaswa and Y. Hama, Phys. Rev., B 45, 586 (1992) https://doi.org/10.1103/PhysRevB.45.586
  24. J, Niu, J. Sha, N. Zhang, Y. Ji, X. Ma and D. Yang, Physica E, 23, 1 (2004) https://doi.org/10.1016/j.physe.2003.11.274