Deletion of N-terminal End Region of ErmSF Leads to an Amino Acid Having Important Role in Methyl Transfer Reaction

ErmSF에서 특이적으로 발견되는 N-terminal End Region의 점차적인 제거에 의한 활성에 중요한 아미노산의 규명

  • Lee Hak Jin (Department of Genetic Engineering, College of Natural Science, The University of Suwon) ;
  • Jin Hyung Jong (Department of Genetic Engineering, College of Natural Science, The University of Suwon)
  • 이학진 (수원대학교 자연과학대학 생명공학과) ;
  • 진형종 (수원대학교 자연과학대학 생명공학과)
  • Published : 2004.12.01

Abstract

ErmSF is one of the ERM proteins which transfer the methyl group to A2058 in 23S rRNA to confer the resis­tance to MLS (macrolide-lincosamide-streptogramin B) antibiotics on microorganism. Unlike other ERM pro­teins, ErmSF contains long N-terminal end region (NTER), of which $25\%$ is composed of arginine that is known to interact with RNA well. Gradual deletion of NTER leaded us to the point where mutant protein lost much of activity in vivo. Overexpressed and purified mutant protein showed much reduced activity in vitro: $2\%$ activity relative to that of wild type protein. This fact suggests that this amino acid interact with RNA close to meth­ylatable adenine to locate it at an active site properly.

ErmSF는 235 rRNA에 존재하는 $A_{2058}$에 이중메틸화(dimethylation)시킴으로써 항생제가 부착되는 것을 억제하여 미생물에게 MLS (macrolide-lincosamide-streptogramin B)항생제에 대하여 내성을 나타내게 하는 ERM계열 단백질(Erm family protein)중의 하나이다. 다른 ERM 단백질과는 달리 ErmSF는 상당히 긴 N-말단부위 (N-terminal end region, NTER)를 가지고 있고 이겻은 RNA와 잘 결합하는 것으로 알려진 arginine이 약 $25\%$를 구성 하고 있다. ErmSF로부터 점차적으로 NTER을 절단하면서 절단된 단백질의 활성을in vivo에서 검색하였다. 다른 변이단백질과는 달리 R60번째까지 제거된 변이단백질은 활성이 많이 소실된 것을 in vivo상에서 관찰하였다. 이 단백질을 대량생산하여 정제하고 in vivo상에서 그 활성을 검색한 결과 wild type 단백질에 비해 약 $98\%$의 활성이 소실된 것을 밝혔다. 이러한 사실은 R60이 메틸화되는 아데닌 (methylatable adenine)의 근처에 존재하는 RNA와 작용하여 메틸화되는 아데닌이 활성화부위에 적절히 위치하도록 하는 역할을 담당한다는 것을 암시하고 있다.

Keywords

References

  1. 진형종. 2001. MLS (macrolide-lincosamide-streptogramin B) 항생제 내성인자 단백질인 ErmSF domain 발현. Kor. J. Microbiol. 37, 245-252
  2. Birmingham, V.A., K.L. Cox, J.L. Larson, S.E. Fishman, C.L. Hershberger, and E.T. Seno. 1986. Cloning and expression of a tylosin resistance gene from a tylosin-producing strain of Streptomyces fradiae. Mol. Gen. Genet. 204, 532-539
  3. Buriankova, K., F.D. Populaire, O. Dorson, A. Dondran, J.C. Ghnassia, J. Weiser, and J.L. Nd Pernadet. 2004. Molecular basis of intrinsic macrolideresistance in the Mycobacterium tuberculosis complex. Antimicrob. Agents Chemother. 48, 143-150
  4. Bussiere, D.E., S.W. Muchmore, C.G. Dealwis, G. Schluckebier, V.L. Nienaber, R.P. Edalji, K.A. Walter, U.S. Ladror, T. F. Holzman, C. Abad-Zapatero. 1998 Crystal structure of ErmC', an rRNA methyltransferase which mediates antibiotic resistance in bacteria. Biochemistry. 37, 7103-7112
  5. Cundliffe, E. 1989. How antibiotic-producing organisms avoid suicide. Annu. Rev. Microbiol. 43, 207-223
  6. 'Frontiers in Biotechnology : Antibiotic Resistance' 1994. Science 264, 317-476
  7. Gandecha, A.R. and E. Cundliffe. 1996. Molecular analysis of tlrD, an MLS resistance determinant from tylosin producer, Streptomyces fradiae. Gene 180, 173-176
  8. Jin, H.J. 1999. ermSF, a ribosomal RNA adenine N$_6$-methyltransferase gene from Streptomyces fradiae, confers MLS (macrolidelincosamide- streptogramin B) resistance to E. coli when it is expressed. Mol. Cells 9, 252-25
  9. Jin H.J. and Y.D. Yang. 2002. Purification and biochemical characterization of the ErmSF macrolide-lincosamide-streptogramin B resistance factor protein expressed as a hexahistidine-tagged protein in Escherichia coli. Protein Expr. Purif. 25, 149-59
  10. Kamimiya, S. and B. Weisblum. 1988. Translation attenuation control of ermSF, an inducible resistance determinant encoding rRNA N-methyltransferase from Streptomyces fradiae. J. Bacteriol. 170, 1800-1811
  11. Kovalic, D., R.B. Giannattasio, H.J. Jin, and B. Weisblum. 1994. 23S rRNA Domain V, a fragment that can be specifically methylated in vitro by the ErmSF (TlrA) methyltransferase. J. Bacteriol. 176, 6992-699
  12. Kovalic, D., J.H. Kwak, and B. Weisblum. 1991. General method for direct cloning of DNA fragments generated by the polymerase chain reaction. Nucleic Acid Res. 19, 4650
  13. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T. Nature. 227, 680-685
  14. Lai, C.J., B. Weisblum, S.R. Fahnestock, and M. Nomura. 1973. Alteration of 23 S ribosomal RNA and erythromycin-induced resisitance to lincomycin and spiramycin in Staphylococcus aureus. J. Mol. Biol. 74, 67-72
  15. Liu M. and S. Douthwaite. 2002. Methylation at nucleotide G745 or G748 in 23S rRNA distinguishes Gram-negative from Grampositive bacteria. Mol. Microbiol. 44, 195-204
  16. Maravic, G., M. Feder, S. Ponger, M. Fogel, and J.M. Bujnicki. 2003. Mutational analysis defines the roles of conserved amino acid residues in the predicted catalytic pocket of the rRNA:m$^6$A methyltransferase ErmC´. J. Mol. Biol. 332, 99-109
  17. Roberts, M.C., J. Sutcliffe, P. Courvalin, L.B. Jensen, J. Rood, and H. Seppala. 1999. Nomenclature for macrolide and macrolide-lincomycin- streptogramin B resistance determinants. Antimicrob. Agents Chemother. 43, 2823-2830
  18. Rosteck Jr, R.R., P.A. Reynolds, and C.L. Hershberger. 1991. Homology between proteins controlling Streptomyces fradiaetylosin resistance and ATP-binding transport. Gene 102, 27-32.19
  19. Schluckebier G, Zhong P, Stewart KD, Kavanaugh TJ, Abad-Zapatero C. 1999. The 2.2 $\AA$ structure of the rRNA methyltransferase ErmC' and its complexes with cofactor and cofactor analogs: implications for the reaction mechanism. J Mol. Biol. 289, 277- 291 https://doi.org/10.1006/jmbi.1999.2788
  20. Skinner, R., E. Cundliffe, and F.J. Schmidt. 1983. Site for Action of a ribosomal RNA methylase responsible for resistance to erythromycin and other antibiotics. J. Biol. Chem. 258, 12702-12706
  21. Vester, B., and S. Douthewaite. 1994. Domain V of 23S rRNA contains all the structural elements necessary for recognition by the ErmE methytransferase. J. Bacteriol. 176, 6999-7004
  22. Weisblum, B. 1995. Erythromycin resistance by ribosome modification. Antimicrob. Agents Chemother. 39, 577-585
  23. Zalacain, M. and E. Cundliffe. 1991. Cloning of tlrD, a fourth resistance gene, from the tylosin producer, Streptomyces fradiae. Gene 97, 137-142
  24. Zalacain, M. and E. Cundliffe. 1989. Methylation of 23S rRNA by tlrA(ermSF), a tylosin resistance determinant from Streptomyces fradiae. J. Bacteriol. 171, 4254-4260 https://doi.org/10.1128/jb.171.8.4254-4260.1989