Purification and Characterization of Cell Wall Hydrolase from Alkalophilic Bacillus mutanolyticus YU5215

  • OHK, SEUNG-HO (Department of Oral Microbiology, and Dental Science Research Institute, Chonnam National University) ;
  • NAM, SEUNG-WOO (R&D Center, Pulmuone Co., Ltd) ;
  • KIM, JIN-MAN (Department of Biotechnology, Yosu National University) ;
  • YOO, YUN-JUNG (Department of Oral Biology, Yonsei University) ;
  • BAI, DONG-HOON (Department of Food Engineering, Dankook University)
  • Published : 2004.12.01

Abstract

Streptococcus mutans has the capacity of inducing dental caries. Thus, to develop a novel way of preventing dental caries, a cell wall hydrolase-producing strain was isolated and its characteristics were investigated. Among 200 alkalophilic strains isolated from soil, 8 strains exhibited lytic activities against Streptococcus mutans. However, strain YU5215 with the highest cell wall hydrolase activity was selected for further study. Strain YU5215 was identified as a novel strain of Bacillus based on analyzing its 16S rDNA sequence and Bergey's Manual of Systematic Bacteriology, and thus designated as Bacillus mutanolyticus YU5215. The optimal conditions for the production of the cell wall hydrolase from Bacillus mutanolyticus YU5215 consisted of glucose ($0.8\%$), yeast extract ($1.2\%$), polypeptone ($0.5\%$), $K_{2}HPO_{4}\;(0.1\%$), $MgSO_{4}{\cdot}7H_{2}O$ ($0.02\%$), and $Na_{2}CO_{3}\;(1.0\%$) at pH 10.0. Bacillus mutanolyticus YU5215 was cultured at 30^{circ}C for 72 h to produce the cell wall hydrolase, which was then purified by acetone precipitation and CM-agarose column chromatography. The molecular weight of the lytic enzyme was determined as 22,700 Da by SDS-PAGE. When the cell wall peptidoglycan of Streptococcus mutans was digested with the lytic enzyme, no increase in the reducing sugars was observed, while the free amino acids increased, indicating that the lytic enzyme had an endopeptidase-like property. The amino terminus of the cell wall peptidoglycan digested by the lytic enzyme was determined as a glutamic acid, while the lytic site of the lytic enzyme in the Streptococcus mutans peptidoglycan was identified as the peptide linkage of L-Ala and D-Glu.

Keywords

References

  1. Chaplin, M. F. and J. F. Kennedy. 1976. Magnetic, immobilised derivatives of enzymes. Carbohydr. Res. 50: 267-274
  2. Chun, J. Y., I. H. Ryu, J. S. Park, and K. S. Lee. 2002. Anticaries activity of antimicrobial material from Bacillus alkalophilshaggy JY-827. J. Microbiol. Biotechnol. 12(1): 18-24
  3. Clarke, J. K. 1924. On the bacterial factor in the etiology of dental caries. Brit. J. Exp. Path. 5: 141-147
  4. Fan, D. P. 1970. Cell wall binding properties of the Bacillus subtilis autolysin (5) dechaining enzyme. J. Bacteriol. 103: 488-493
  5. Fan, D. P. 1970. The autolysin (5) of Bacillus subtilis as dechaining enzyme. J. Bacteriol. 103: 494-499
  6. Foster, J. S. 1991. Cloning, expression, sequence analysis and biochemical characterization of an autolytic amidase of Bacillus subtilis 168 trpC2. J. Gen. Microbiol. 137: 1987- 1998 https://doi.org/10.1099/00221287-137-8-1987
  7. Fukui, K., T. Moriyama, Y. Miyake, K. Mizutani, and O. Tanaka. 1982. Purification and properties of glycosyltransferase responsible for water-insoluble glucan synthesis from Streptococcus mutans. Infect. Immun. 37: 1-9
  8. Fukushima, K., R. Motoda, K. Takada, and T. Ikeda. 1981. Resolution of Streptococcus mutans glucosyltransferases into two components essential to water-insoluble glucan synthesis. FEBS Letters 128: 213-216
  9. Ghuysen, J. M. and R. Hakenbeck. 1994. Bacterial Cell Wall, pp. 23-38. Elsevier Science B. V., Amsterdam, The Netherlands
  10. Graycar, T., M. Knapp, G. Ganshaw, J. Dauberman, and R. Bott. 1999. Engineered Bacillus lentus subtilisins having altered flexibility. J. Mol. Biol. 292(1): 97-109 https://doi.org/10.1006/jmbi.1999.3033
  11. Hakamada, Y., T. Kobayashi, J. Hitomi, S. Kawai, and S. Ito. 1994. Molecular cloning and nucleotide sequence of the gene for an alkaline protease from the alkalophilic Bacillus sp. KSM-K16. J. Ferment. Bioeng. 78(1): 105-108
  12. Hamada, S. and H. D. Slade. 1980. Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiol. Rev. 44: 331-384
  13. Hamada, S. and M. Torii. 1980. Interaction of glycosyltransferase from Streptococcus mutans with various glucans. J. Gen. Microbiol. 116: 51-59
  14. Hayashi, K. and T. Kasumi. 1981. Purification and characterization of the lytic enzyme produced by Streptomyces rutgersensis H-46. Agric. Biol. Chem. 45: 2289-2300
  15. Hobol, J. A. and H. J. Rogers. 1991. Intracellular location of the autolytic N-acetylmuramyl-L-alanine amidase in Bacillus subtilis 168 and in an autolysis-deficient mutant by immunoelectron microscopy. J. Bacteriol. 173: 961-967
  16. Ikeda, T., H. J. S. Lam, and E. L. Bradley. 1973. Changes in Streptococcus mutans and Lantobacilli in plaque in relation to the initiation of dental caries in negro children. Arch. Oral Biol. 18: 555-556
  17. Jeon, E. J., I. H. Jung, K. S. Cho, E. S. Seo, D. Kim, S. J. Lee, K. H. Park, and T. W. Moon. 2003. Low cariogenecity of maltosyl-erythritol, major transglycosylation product of erythritol, by Bacillus stearothermophilus maltogenic amylase. J. Microbiol. Biotechnol. 13: 815-818
  18. Jung, M. H., S. H. Ohk, D. Y. Yum, I. S. Kong, D. H. Bai, and J. H. Yu. 1993. Nucleotide sequence of a bacteriolytic enzyme gene from alkalophilic Bacillus sp. J. Microbiol. Biotechnol. 3: 73-77
  19. Keyes, P. H. 1958. Dental caries in the molar teeth of rats. A method for diagnosing and scoring several types of lesions simultaneously. J. Dent. Res. 37: 1088-1099 https://doi.org/10.1177/00220345580370060901
  20. Koga, T., S. Sato, T. Yakushiji, and M. Inoue. 1983. Separation of insoluble and soluble glucan-synthesizing glycosyltransferases of Streptococcus mutans. Microbiol. Lett. 16: 127-130
  21. Kwon, D. Y., M. Koo, C. R. Ryu, C. H. Kang, K. H. Min, and W. J. Kim. 2002. Bacteriocin produced by Pediococcus sp. in Kimchi and its characteristics. J. Microbiol. Biotechnol. 12(1): 96-105
  22. Lee, K. H., G. S. Moon, J. Y. An, H. J. Lee, H. C. Chang, D. K. Chung, J. H. Lee, and J. H. Kim. 2002. Isolation of a nisin-producing Lactococcus lactis strain from Kimchi and characterization of its nisZ gene. J. Microbiol. Biotechnol. 12(3): 389-397
  23. Margot, P., C. H. Roten, and D. Karamata. 1991. Nacetylmuramoyl- L-alanine amidase assay based on specific radioactive labeling of muropeptide L-alanine; Quantitation of the enzyme activity in the autolysin deficient Bacillus subtilis 168, flaD strain. Anal. Biochem. 198: 15-18
  24. Martin, J. R., F. A. Mulder, Y. Karimi-Nejad, J. van der Zwan, M. Mariani, D. Schipper, and R. Boelens. 1997. The solution structure of serine protease PB92 from Bacillus alcalophilus presents a rigid fold with a flexible substratebinding site. Structure 5(4): 521-532
  25. Montville, T. J., C. L. Cooney, and A. J. Sinskey. 1978. Streptococcus mutans dextranase. Adv. Appl. Microbiol. 24: 55-84
  26. Ohk, S. H., I. H. Yeo, Y. J. Yoo, B. K. Kim, and D. H. Bai. 2001. Cloning and expression of a yeast cell wall hydrolase gene (ycl) from alkalophilic Bacillus alcalophilus subsp. YB380. J. Microbiol. Biotechnol. 11: 508-514
  27. Ohk, S. H., Y. J. Yoo, and D. H. Bai. 2001. Purification and characterization of Streptococcus mutans cell wall hydrolase from Bacillus subtilis YL-1004. J. Microbiol. Biotechnol. 11(6): 957-963
  28. Potvin, C., D. Leclerc, G. Tremblay, A. Asselin, and G. Bellemare. 1988. Cloning, sequencing and expression of a Bacillus bacteriolytic enzyme in E. coli. Mol. Gen. Genet. 214: 241-248
  29. Rogers, H. J., C. Taylor, S. Rayter, and J. B. Ward. 1984. Purification and properties of autolytic endo-$\beta$-Nacetylglucosaminidase and the N-acetylmuramyl-L-alanine amidase from Bacillus subtilis strain 168. J. Gen. Microbiol. 130: 2395-2402
  30. Rpsan, B. 1994. In Nisengard, R. J. and M. B. Newman (eds.). Oral Microbiology and Immunology, pp. 129-146. 2nd Ed. Saunders
  31. Slots, T. 1992. Contemporary Oral Microbiology and Immunology. Mosby-Year Book
  32. Soukka, T., J. Tenobuo, and J. Rundegren. 1993. Agglutination of Streptococcus mutans serotype c cells but inhibition of Porphyromonas gingivalis autoaggregation by human lactoferrin. Archs. Oral Biol. 38: 227-232
  33. Spinell, D. M. and R. J. Gibbons. 1974. Influence of culture medium on the glycosyltransferase and dextran-binding capacity of Streptococcus mutans. Infect. Immun. 10: 1148-1151
  34. Tanzer, J. M., M. L. Freedman, R. J. Fitzgerald, and R. H. Larson. 1974. Diminished virulence of glucan synthesis-detective mutants of Streptococcus mutans. Infect. Immun. 10: 197-203
  35. Walker, N. E. 1971. Structure of the cell wall of Bacillus stearothermophilus; mode of action of a thermophilic bacteriophage lytic enzyme. J. Bacteriol. 107: 697-703
  36. Willets, S. 1991. Essential Dental Microbiology. Appleton & Lange
  37. Yanai, A., K. Kato, T. Beppu, and K. Arima. 1976. Bacteriophage induced lytic enzyme which hydrolyzes L-alanine-D-glutamic acid peptide bond in peptidoglycan. Biochem. Biophys. Res. Commun. 68: 1146-1152
  38. Yeo, I. H., S. K. Han, J. H. Yu, and D. H. Bai. 1998. Isolation of novel alkalophilic Bacillus alcalophilus subsp. YB380 and the characteristics of its yeast cell wall hydrolase. J. Microbiol. Biotechnol. 8: 501-508
  39. Yumoto, I., K. Yamazaki, T. Sawabe, K. Nakano, K. Kawasaki, Y. Ezura, and H. Shinano. 1998. Bacillus horti sp. nov., a new Gram-negative alkalophilic bacillus. Int. J. Syst. Bacteriol. 48: 565-571