Novel properties of erbium-silicided n-type Schottky barrier metal-oxide-semiconductor field-effect-transistors

  • Jang, Moon-Gyu (Nano-electronic Device Team, Future Technology Research Division, Electronics and Telecommunications Research Institute) ;
  • Kim, Yark-Yeon (Nano-electronic Device Team, Future Technology Research Division, Electronics and Telecommunications Research Institute) ;
  • Shin, Jae-Heon (Nano-electronic Device Team, Future Technology Research Division, Electronics and Telecommunications Research Institute) ;
  • Lee, Seong-Jae (Nano-electronic Device Team, Future Technology Research Division, Electronics and Telecommunications Research Institute) ;
  • Park, Kyoung-Wan (Department of Nano Science and Technology, University of Seoul)
  • 발행 : 2004.06.30

초록

silicided 50-nm-gate-length n-type Schottky barrier metal-oxide-semiconductor field-effect-transistors (SB-MOSFETs) with 5 nm gate oxide thickness are manufactured. The saturation current is $120{\mu}A/{\mu}m$ and on/off-current ratio is higher than $10^5$ with low leakage current less than $10{\mu}A/{\mu}m$. Novel phenomena of this device are discussed. The increase of tunneling current with the increase of drain voltage is explained using drain induced Schottky barrier thickness thinning effect. The abnormal increase of drain current with the decrease of gate voltage is explained by hole carrier injection from drain into channel. The mechanism of threshold voltage increase in SB-MOSFETs is discussed. Based on the extracted model parameters, the performance of 10-nm-gate-length SB-MOSFETs is predicted. The results show that the subthreshold swing value can be lower than 60 mV/decade.

키워드

참고문헌

  1. L. E. Calvet, H. Luebben, M. A. Reed, C. Wang, J. P. Snyder, and J. R. Tucker, 'Suppression of leakage current in Schottky barrier metal-oxide-semiconductor field-effect-transistors', J. Appl. Phys., vol. 91, pp. 757-759, Jan. 2002 https://doi.org/10.1063/1.1425074
  2. H. C. Lin, M. F. Wang, F. J. Hou, J. T. Liu, T. Y. Huang, and S. M. Sze, 'Application of field-induced source/drain Schottky metal-oxide-semiconductor to fin-like body field-effect transistor', Jpn. J. Appl. Phys., Part 2, vol. 41, pp. L626-L628, June. 2002 https://doi.org/10.1143/JJAP.41.L626
  3. J. Kedzierski, P. Xuan, Erik H. Anderson, J. Bokor, T. J. King, and C. Hu, 'Complementary silicide source/drain thin-body MOSFETs for the 20nm gate length regime', Tech. Dig. . Int. Electron Devices Meet. 2000, 57 (2000) https://doi.org/10.1109/IEDM.2000.904258
  4. A. Itoh, M. Saitoh, and M. Asada, 'A 25-nm-long channel metal-gate p-type Schottky source/drain metal-oxide-semiconductor field effect transistor on separation-by-implanted-oxygen substrate', Jpn. J. Appl. Phys., Part 1, vol. 39, pp. 4757-4758, Aug. 2000 https://doi.org/10.1143/JJAP.39.4757
  5. S. A. Rishton, K. Ismail, J. O. Chu, K. Chan, and K. Y. Lee, 'New complimentary metal-oxide semiconductor technology with self-aligned Schottky source/drain and low-resistance T gates', J. Vac. Sci. Technol. vol. B15, pp. 2795-2798, Nov. 1997 https://doi.org/10.1116/1.589730
  6. M. Jang, K. Kang, S. Lee, and K. Park, 'Simulation of Schottky barrier tunnel transistor using simple boundary condition', Appl. Phys. Lett., vol. 82, pp. 2718-2720, April. 2003 https://doi.org/10.1063/1.1569415
  7. T. J. Thornton, 'Physics and applications of the Schottky junction transistor', IEEE Trans. Electron Devices, vol. 48, 2421-2427, Oct. 2001 https://doi.org/10.1109/16.954487
  8. B. Winstead, and U. Ravaioli, 'Simulation of Schottky barrier MOSFETs with a coupled quantum injection/Monte Carlo technique', IEEE Trans. Electron Devices, vol. 47, pp. 1241-1246, June. 2000 https://doi.org/10.1109/16.842968
  9. W. Saitoh, A. Itoh, S. Yamagami, and M. Asada, 'Analysis of short-channel Schottky source/drain metal-oxide-semiconductor field-effect transistor on silicon-on-insulator substrate and demonstration of sub-50-nm n-type devices with metal gate', Jpn. J. Appl. Phys., Part 1, vol. 38, pp. 6226-6231, Nov. 1999 https://doi.org/10.1143/JJAP.38.6226
  10. J. R. Tucker, C. Wang, and P. Scott Carney, 'Silicon field-effect transistor based on quantum tunneling', Appl. Phys. Lett., vol. 65, pp. 618-620, Aug. 1994 https://doi.org/10.1063/1.112250
  11. S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981) pp. 469-486
  12. N. Arora, MOSFET Models for VLSI Circuit Simulation (Springer, New York, 1993), pp. 230-324
  13. J. Clifford, and D. L. Pulfrey, 'Bipolar conduction and drain-induced barrier thinning in carbon nanotube FETs', IEEE Trans. Nanotechnology, vol. 2, pp. 181-185, Sept. 2003 https://doi.org/10.1109/TNANO.2003.817527
  14. M. Jang, J. Oh, S. Maeng, W. Cho, S. Lee, K. Kang, and K. Park, 'Characteristics of erbium-silicided n-type Schottky barrier tunnel transistors', Appl.Phys. Lett., vol. 83, pp. 2611-2613, Sept. 2003 https://doi.org/10.1063/1.1614441
  15. M. Jang, Y. Kim, J. Shin, S. Lee, and K. Park, 'A 50-nm-gate-length erbium-silicided n-type Schottky barrier metal-oxide-semiconductor fielde-ffect transistor', Appl. Phys. Lett., vol. 84, pp. 741-743, Feb. 2004 https://doi.org/10.1063/1.1645665