DOI QR코드

DOI QR Code

졸-겔법에 의해 제조된 Al-Doped ZnO 박막의 후열처리 온도에 따른 전기 및 광학적 특성

Optical and Electrical Properties with Various Post-Heating Temperatures in the Al-Doped ZnO Thin Films by Sol-Gel Process

  • 고석배 (성균관대학교 정보통신용 신기능성 소재 및 공정연구센터) ;
  • 최문순 (성균관대학교 정보통신용 신기능성 소재 및 공정연구센터) ;
  • 고형덕 (성균관대학교 정보통신용 신기능성 소재 및 공정연구센터) ;
  • 이충선 (아주대학교 물리학과) ;
  • 태원필 (인하대학교 소재연구소) ;
  • 서수정 (성균관대학교 정보통신용 신기능성 소재 및 공정연구센터) ;
  • 김용성 (성균관대학교 정보통신용 신기능성 소재 및 공정연구센터)
  • Ko, Seok-Bae (Advanced Material Process of Information Technology, Sungkyunkwan University) ;
  • Choi, Moon-Sun (Advanced Material Process of Information Technology, Sungkyunkwan University) ;
  • Ko, Hyungduk (Advanced Material Process of Information Technology, Sungkyunkwan University) ;
  • Lee, Chung-Sun (Department of Physics, Ajou University) ;
  • Tai, Weon-Pil (Institute of Advanced Materials, Inha University) ;
  • Suh, Su-Jeong (Advanced Material Process of Information Technology, Sungkyunkwan University) ;
  • Kim, Young-Sung (Advanced Material Process of Information Technology, Sungkyunkwan University)
  • 발행 : 2004.10.01

초록

비등점이 낮은 용매인 isopropanol에 용질농도 0.7mol/$\iota$ Zn acetate를 용해시키고 dopant로 Al chloride를 첨가하여 균일하고 안정한 sol을 합성하였다. 졸-겔법에 의한 Al-doped ZnO(AZO) 박막의 제조시 $500\~700^{\circ}C$의 범위에서 후열처리 온도를 제어하여 박막의 전기 및 광학적 특성을 조사하였다. 후열처리 온도가 증가할수록 (002) 면으로의 c-축 결정배향성은 증가하였고, 박막 표면은 균일한 나노입자의 미세구조를 형성하였다. 광 투과도는 $650^{\circ}C$ 이하의 후열처리 온도에서 $86\%$이상이었으나, $700^{\circ}C$에서는 감소하였다. 박막의 전기 비저항 값은 $650^{\circ}C$ 이하에서 열처리 온도가 증가함에 따라 73에서 22$\Omega$-cm로 감소하였으나 $700^{\circ}C$에서 580$\Omega$-cm로 급격히 증가하였다. 후열처리 온도 $700^{\circ}C$에서 AZO 박막의 전기 및 광학적 특성의 열화는 XPS 분석결과, 박막 표면에 석출된 $Al_2O_3$ 상에 기인하였다. AZO 박막의 전기 및 광학적 특성 향상을 위한 최적의 후열처리 온도는 $600^{\circ}C$였다.

Isopropanol of low boiling point was used as a solvent to prepare Al-doped ZnO(AZO) thin films. A homogeneous and stable sol was made from Zn acetate a solute whose mole concentration was 0.7mol/$\iota$ and Al chloride as a dopant. Al-doped ZnO thin films were prepared by sol-gel method as a function of post-heating temperature from 500 to $700^{\circ}C$ and the optical and electrical properties were investigated. The c-axis orientation along (002) plane was enhanced with the increasing of post-heating temperature and the surface morphology of the films showed a homogeneous and nano-sized microstructure. The optical transmittance of the films post-heated below $650^{\circ}C$ was over $86\%$, but decreased at $700^{\circ}C$. The electrical resistivity of the thin films decreased from 73 to 22 $\Omega$-cm as the post-heating temperature increased up to $650^{\circ}C$, but increased greatly to 580 $\Omega$-cm at $700^{\circ}C$. XPS analysis indicated that the deterioration of electrical and optical properties was attributed to the precipitation of $Al_2O_3$ phase on the surface of AZO thin film. This result suggests that the optimum post-heating temperature to improve electrical and optical properties is $600^{\circ}C$.

키워드

참고문헌

  1. P. Nunes, D. Costa, E. Fortunato, and R. Martins, 'Per- formances Presented by Zinc Oxide Thin Films Deposited by R.F. Magnetron Sputtering,' Vacuum, 64 293-97 (2000)
  2. S. M. Hyun, K. Hong, and B. H. Kim, 'Preparation and Characterization of Al-Doped ZnO Transparent Conducting Thin Film by Sol-Gel Processing,' J. Kor. Ceram. Soc., 33 [2] 149-54 (1996)
  3. B. O. Park, K. H. Ko, and J. H. Lee, 'Electrical and Optical Properties of ZnO Transparent Conducting Films by the Sol- Gel Method,' J. Cryst. Growth, 247 119-25 (2003) https://doi.org/10.1016/S0022-0248(02)01907-3
  4. P. Nunes, E. Fortunato, P. Tonello, F. Braz Femandes, P. Vilarinho, and R. Martins, 'Effect of Different Dopant Ele- ments on the Properties of ZnO Thin Films,' Vacuum, 64 281-85 (2002) https://doi.org/10.1016/S0042-207X(01)00322-0
  5. S. B. Majumder, M. Jain, P. S. Dobal, and R. S. Katiyar, 'Investigations on Solution Derived Aluminium Doped Zinc Oxide Thin Films,' Mater. Sci. and Eng., B 103 [1] 16-25 (2003) https://doi.org/10.1016/S0921-5107(03)00128-4
  6. F. Quaranta, A. Valentini, and F. R. Rizzi, 'Dual-Ion-Beam Sputter Deposition of ZnO Films,' J. AppL Phys., 74 [1] 247-48 (1993)
  7. A. J. C. Fiddes, K. Durose, and A. W. Brinkman, 'Prep- aration of ZnO Films by Spray Pyrolysis,' J. Cryst. Growth, 159 [1] 210-13 (1996) https://doi.org/10.1016/0022-0248(95)00707-5
  8. M. Ohyama, H. Kozuka, and T. Yoko, 'Sol-Gel Preparation of ZnO Films with Extremely Preferred Orientation along (002) Plane from Zinc Acetate Solution,' Thin Sotid Fitms, 306 [1] 78-85 (1997) https://doi.org/10.1016/S0040-6090(97)00231-9
  9. D. Bao, H. Gu, and A. Kuang, 'Sol-Gel Derived c-axis Ori-ented ZnO Thin Films," Thin Sotid Fitms, 312 37-9 (1998) https://doi.org/10.1016/S0040-6090(97)00302-7
  10. H.-C. Han, I.-J. Kim, W.-P. Tae, J.-K. Kim, M.-S. Shim, S.- J. Suh, and Y.-S. Kim, 'Structural, Optical, Electhcal Prop- erties of ZnO Thin Films with Zn Concentration,' J. Kor. Ceram. Soc., 40 [11] 1113-19 (2003) https://doi.org/10.4191/KCERS.2003.40.11.1113
  11. I.-J. Kim, H.-C. Han, C.-S. Lee, Y.-J. Song, W.-P. Tai, S.-J. Suh, and Y.-S. Kim, 'Physical Properties of ZnO Thin Films Grown by Sol-Gel Process with Different Preheating Tem- peratures,' J. Kor. Ceram. Soc., 41 [2] 136-42 (2004) https://doi.org/10.4191/KCERS.2004.41.2.136
  12. V. Cracium, J. Elders, and J. G. E. Gardeniers, 'Charac- teristics of High Quality ZnO Thin Films Deposited byPulsed Laser Deposition,' Appl. Phys. Lett., 65 [23] 2963-65 (1994) https://doi.org/10.1063/1.112478
  13. K. L. Narasimhan, S. P. Pai, V. R. Palkar, and R. Pinto, 'High Quality Zinc Oxide Films by Pulsed Laser Ablation,' Thin Solid Fitms. 295 104-06 (1997) https://doi.org/10.1016/S0040-6090(96)09157-2
  14. S. K. Ghandhi, R. J. Field, and J. R. Shealy, 'Highly Ori- ented Zinc Oxide Films Grown by the Oxidation of Dieth- ylzinc,' AppI. Phys. Lett., 37 [5] 449-51 (1980) https://doi.org/10.1063/1.91960
  15. A. P. Roth and D. F. Williams, 'Properties of Zinc Oxide Films Prepared by the Oxidation of Diethyl Zinc,' J. Appl. Phys., 52 [11] 6685-92 (1981) https://doi.org/10.1063/1.328618
  16. Y. Natsume, H. Sakata, T. Hirayama, and H. Yanagida,'Low-Temperature Conductivity of ZnO Films Prepared byChemical Vapor Deposition,' J. Appt. Phys., 72 [9] 4203-07 (1992) https://doi.org/10.1063/1.352231