Effect of Enamel Matrix Derivative on Guided Bone Regeneration with Intramarrow Penetration

골수내천공을 동반한 골유도재생술시 법랑기질유도체의 효과

  • Lee, Young-Jong (Department of Periodontology, Kyung Hee University) ;
  • Park, Joon-Bong (Department of Periodontology, Kyung Hee University) ;
  • Kwon, Young-Hyuk (Department of Periodontology, Kyung Hee University) ;
  • Herr, Yeek (Department of Periodontology, Kyung Hee University) ;
  • Cho, Kyoo-Sung (Department of Periodontology, College of Dentistry, Yonsei University)
  • 이영종 (경희대학교 치과대학 치주과학교실) ;
  • 박준봉 (경희대학교 치과대학 치주과학교실) ;
  • 권영혁 (경희대학교 치과대학 치주과학교실) ;
  • 허익 (경희대학교 치과대학 치주과학교실) ;
  • 조규성 (연세대학교 치과대학 치주과학교실)
  • Published : 2004.06.30

Abstract

The purpose of this study was to investigate effect of enamel matrix derivative on guided bone regeneration with intramarrow penetration in rabbits. Eight adult male rabbits (mean BW 2Kg) were used in this study. Intramarrow penetration defects were surgically created with round carbide bur(HP long #6) on calvaria of rabbits. Defects were assigned to the control group grafted with mixture of the same quantity of demineralized freeze-dried bone allograft and deproteinized bovine bone mineral. Then, guided bone regeneration was carried out using resorbable membrane and suture. Enamel matrix derivative applied to defects was assigned to the test group. And treated as same manners as the control group. At 1, 2, 3 and 8 weeks after the surgery, animals were sacrificed, specimens were obtained and stained with Hematoxylin-Eosin for light microscopic evaluation. The results of this study were as follows : 1. At 1, 2 and 3 weeks, no differences were observed between the control group and the test group in the aspect of bone formation around bone graft. 2. Proliferation of blood capillary was faster in the test group than in the control group. 3. Bone regeneration in intramarrow penetration was faster in the test group than in the control group. 4. At 8 weeks, new osteoid tissue formation around bone graft was more prominent in the test group than in the control group. From the above results, enamel matrix derivative might be considered as the osteopromotion material and effective in the guided bone regeneration with intramarrow penetration.

Keywords

References

  1. Carlsson, G.E., Bergman, B., and Hedegard, B.: Changes in contour of the alveolar pro- cess. Acta. Odontol, Scand., 25: 45-75,1967
  2. Simon, B.I., Hagen, S.V., Deasy, M.J., Faldu, M., and Resnansky, D.: Changes in alveolar bone height and width following ridge augmentation using bone graft and mem- branes J. Periodontol,. 71: 1774-1791,2000
  3. Becker, W., Becker, B., and Caffesse, R,: A comparison of demineralized freeze-dried bone and autologous bone to induce bone formation in human extraction sockets. J. Periodontol., 65:1128-1133,1994
  4. Yilmaz, S., Efeoglu, E., and Kille, A.R.: alveolar ridge reconstruction and/or pre- servation using root form bioglass cones. J. Clin. Periodontol., 25: 832-839,1998
  5. Lekovic, V., Camargo, P.M., Klokkevold, P.R., and Nedic, M.: Preservation of al- veolar bone in extraction sockets using bioabsorbable membranes. J. Periodontol., 69: 1044-1049, 1998.
  6. Lansberg, C.J.: Socket seal surgery com- bined with immediate implant placement: novel approach for single-tooth replace- ment, Int. J. Periodont. Res. Dent., 17: 141-149, 1997
  7. Dahlin, C., Linde, A., and Gottiow, J. : Healing of bone defects by guided tissue regeneration. Plast, Reconstr, Surg, 5: 672-683, 1989
  8. Nyman, S., Karring, T., and Lindhe, J. : The regenerative potential of the periodon- tal ligament. An experimental study in the monkey. J. Clin. Periodontol., 9 : 257-265, 1982
  9. Gottlow, J., Nyman, S., Lindhe, F., Karring, T. & Wennstrom, J. : New attachment formation in the human periodontium by guided tissue regeneration. Case reports.J. Clin. Periodontol., 13 : 604-616, 1986
  10. McGinnis, M., Larsen, P., Miloro, Mol and Beck, F. M. : Comparision of resorbable and nonresorbable guided bone regenera- tion materials: A preliminary study. Int. J. Oral Maxillofac. Implants, 13 : 30-35, 1998
  11. Iglhaut, J., Aukhil, I., Simpson, D. M., Johnston, M. C., and Koch, G. : Progeni- tor cell kinetics during guided tissue re- generation in experimental periodontal wo- unds, J. Periodont, Res., 23: 107-117, 1988
  12. Karring, T., Nyman, S., Lindhe, J., and Sirirat, M. : Potentials for root resorption during periodontal wound healing. J. Clin. Periodontol., 11 : 41-52,1984
  13. Owens, K. W., and Yukna, R. A. : Call- agen membrane resorption in dogs: a com- parative study. Implant Dent., 10(1) : 49- 58, 2001
  14. Schmid,J., Hammerle, C.H.F., Olah, A.J., and Lang, N.P. : Membrane permeability is unnecessary for the guided generation of new bone. An experimental study in rabbit. Clin, Oral. Implants Res., 5 : 125- 130, 1994
  15. Schmid,J., Hammerle, C.H.F., and Fluckiger, L. : Blood filled spaces with and without filler materials in guided bone regeneration. A comparative experimental study in rabbit using bioresorbable membranes. Clin. Oral. Implants. Res., 8 : 75- 81, 1997
  16. Melloning, J.T., Bowers, G.W., Bright, R. W., and Lawrence, J.J. : Clinical evaluation of freezedried allografts in periodontal osseous defects. J. periodontol.,47: 125- 131, 1976
  17. Majzoub, Z., Berengo, M., Giardino, R., and Cardioli, G. : Role of intramarrow penetration in osseous repair : A pilot study in the rabbit calvaria. J. periodon- tol., 70 : 1510-1510, 1999
  18. Simion, M., Baldoni, M., and Zaffe. D., : Jawbone enlargement using immediate im- plant placement associated with a split- crest technique and guided tissue regen- eration. Int. J. Periodont. Res. Dent. 12(6) : 462-73, 1992
  19. Renvert, S., Garrett, S., Schallhorm, R., Egelberg, J.: Healing after treatment of intraosseous defects. Ill, Effect of osseous grafting and citric acid conditioning. J. Clin, Periodontol., 12 : 441-455,1985
  20. Dragoo, M. R. and Sullivan, H. C.: A clinical and histological evaluation of aut- ogenous iliac bone grafts in human. J. Periodontol., 44 : 599-613,1973
  21. Schallhom, R.G.: The use of autogenous hip marrow biopsy implants for bony crater defects. J. Periodotol., 39: 145-147,1968
  22. Rogenberg, M.M.: Free osseous tissue au- tograft as a predictable procedure. J. Periodontol., 42 : 195-209, 1971
  23. Bell, W.H. : Resorption characteristics of bone and bone substitutes. Oral Surg., 17: 650-657, 1964
  24. Shetty, V., Han, T.J. : Alloplastic materials in reconsrtuctive periodontal surgery. Dent. Clin, North Am., 35(3) : 521-530, 1991
  25. Ouhayoun, J.P,. Shabana, A.H.M., Issahakian, S., Patat, J.L., Guillemin, G., Sawaf, M.H., and Forest, N. : Histological evaluation of natural coral skeleton as a grafting material in miniature swine mandible. J. Mat. Sci- :materials in medicine. 3 : 222-228, 1992
  26. Niederman, R., Savitt, E. D., Heeley, J. D., and Duckworth, J. E. : Regeneration of furca bone using Gore-Tex periodontal material. Int. J. Periodont. Res. Dent. 9(6) : 468-480,1989
  27. Pontoriero, R., Lindhe, J., Nyman, S., Karr- ing, T., Rosenberg, E., and Sanavi, F. : Guided tissue regeneration in the treatment of furcation defects in mandibular molars. A clinical study of degree III involvements. J. Clin. Periodontol. 16(3) : 170-174,1989
  28. Shigeyama, Y., D'Errico J.A., Stone, R., and Somerman, M.J.: Commercially pre- pared allograft material has biological act- ivity in vitro. J. Periodontol., 66 : 478-487,1995
  29. Reddi, A.H.: Regulation of cartilage and bone differentiation by bone morphogenetic proteins. Curro Opin, Cell Biol., 4 : 850- 855, 1992 https://doi.org/10.1016/0955-0674(92)90110-X
  30. Becker, W., Becker,B.E., and Caffesse, R.: A comparison of demineralized freeze- dried bone and autologous bone to induce bone formation in human extraction soc- kets, J. Periodontol., 65 : 1128-1133, 1994
  31. Becker, W., Urist, M.R., Tucker L.M., Becker, B.E., and Ochsenbein, C.: Inad- equate induced bone formation in athymic mice. A Preliminary report. J. Periodontol., 66 : 822-828, 1995
  32. Egelberg, J.: Regeneration and repair of perioontal tissues. J. Periodontal Res., 22 : 233-242, 1987
  33. Hockers, T., Abensur, D., Valentini, P., Legrand, R., and Hammerle, C.H.: The combined use of bioresorbable membranes and xenografts or autografts in the treat- ment of bone. Clin, Oral Implants Res., 10 : 487-498, 1999
  34. Piattelli, M., Favero, G.A., Scarano, A., Orsini, G., and Piattelli, A.: Bone reactions to anorganic bovine bonefbio-Oss) used in sinus augmentation procedures: a histologic long-term report of 20 cases in humans. Int. J. Oral Maxillofac. Implants, 14 : 835-840, 1999
  35. Lundgem, D. and Slotte, C.: Reconstruc- tion of anatomically complicated periodontal defects using a bioresorbable GTR barrier supported by bone mineral. A 6-month follow-up study of 6 cases. J. Clin, Per- iodontol, , 26 : 56-62, 1999
  36. Valentini, P., Abensur, D., Densari, D., Graziani, J.N., and Hammerle, C.: Histologi- cal evaluation of Bio-Oss in a 2-stage sinus floor elevation and implantation pro- cedure. A human case report. Clin, Oral Implants Res., 9 : 59-64, 1998
  37. Valentini, P. and Abensur, D.: Maxillary sinus floor elevation for implant placement with demineralized freeze-dried bone and bovine bone(Bio-Oss): a clinical study of 20 patients. Int. J. Periodont. Res. Dent., 17: 232-241, 1997
  38. Skoglund, A., Hising, P., and Young, C.: A clinical and histologic examination in humans of the osseous response to im- planted natural bone mineral. Int. J. Oral Maxillofac. Implants, 12 : 194-199, 1997
  39. Schlegel, A.K. and Donath, K: BIO-OSS: a resorbable bone substitute? J, Long Term Eff Med, Implants, 8 : 201-209, 1998
  40. Slotte, C. and Lundgren, D.: Augmentation of calvarial tissue using non-permeable silicone domes and bovine bone mineral. An experimental study in the rat, Clin, Oral Implants Red., 10 : 468-476, 1999
  41. Schwartz, Z., Weesner, T., van Dijk, S., Cochran, D.L., Mellonig, J.T., Lohmann, C.H., Carnes, D.L., Goldstein. M., Dean, D,D., and Boyan, B. D.: Ability of depro- teinized cancellous bovine bone to induce new bone formation, J. Periodontol., 71: 1258-1269, 2000
  42. Doll, B.A., Towle, H.J., Hollinger, J.O., Reddi, A.H., and Melloning, J.T. : The osteogenic potential of two composite graft systems using osteogeniri.J. Periodontol. 61 : 745-750, 1990
  43. Sigurdsson, T.J., Lee, M.B., Kubota, K., Turek, T.J., Wozney, J. M., and Wikesjo, M.E., : Periodontal repair in dogs : Re- combinant human bone morphogenetic pro- tein-2 significantly enhances periodontal regeneration, J. Periodontol. 66 : 131-138, 1995
  44. Giannobile, W.V., Ryan, S., Shin, M., Su, D,L., Kaplan, P.L., and Chan, T.C. : Re- combinant human osteogenic protein-1 stimulates periodontal wound healing in classIll furcation defects. J. periodontol.. 69: 129-137, 1998
  45. Lynch, S.E., Buser, D., and Hernandez: Effects of the platelet-derived growth factor/ insulin-like growth factor-1 com- bination bone regeneration around titanium dental implants, : Result of a pilot study in beagle dogs. j, periodontol. 62 : 710- 716,1991
  46. Park, J. B., Matsuura, M., Han, K.Y., Norderyd, O., Lin, W., Genco, R.J., and Cho, M. : Periodontal regeneration in fur- cation defects of beagle dogs using guided tissue regenerative therapy with platelet- derived growth factor, J. Periodontol, 66 : 462-477,1995 https://doi.org/10.1902/jop.1995.66.6.462
  47. Hammmarstrom, L. : Enamel matrix, ce- mentum developing and regeneration. J. Clin, Periodontol., 24: 658-668, 1997
  48. Gestrelius, S., Andersson, C., and johan- sson, A.C. : Formulation of enamel matrix derivative for surface coating.: Kinetics and cell colonization, J. Clin. Periodontol. 24 : 678-684, 1997
  49. Hammmarstrom, L., Heijl, L., and Ges- trelius, S. : Periodontal regeneration in a buccal dehiscence model in monkeys after application of enamel matrix proteins, J. Clin. Periodontol., 24 : 669-677, 1997
  50. Gestrelius, S., Andersson, C., Lidstrom, D., Hammmarstrom, L., and Somerman, M. : In vitro studies on periodontal ligament cells and enamel matrix derivative. J. Clin, Periodontol., 24 : 685-692, 1997
  51. Lungstadaas, S.P., Lundberg, E., Ekdahl, H., Andersson, C., and Gestrelius, S : Autocrine growth factors in human per- iodontalligament cells cultured on enamel matrix derivative. J. Clin. Periodontol., 28: 181-188,2001
  52. Sculean, A., Chiamtella, G.C., Windisch, P., and Donos, N. : Clinical and histologic evaluation of human intrabony defects treated with namel matrix protein derivative (Emdogain) Int. J. Periodont. Res, Dent., 20 : 375-381. 2000
  53. Boyan, B.D., Weesner, T.C., Lohmann, C.H., Andreacchio, D., Carnes, D.L., Dean, D.D., Cochran, D.L., and Schwartz, Z. : Porcine fetal enamel matrix derivative enhances bone formation induced by dem- ineralized freeze dried bone allograft in vivo, J. Periodontol. 71 : 1278-1286,2000
  54. Schwartz, Z., Carnes, D.L., Pulliam. R., Lohmann, C.H., Sylvia, V.L., Liu, Y., Dean, D,D., Cochran, D.L., and Boyan, B.D., : Porcine fetal enamel matrix derivative stimulates proliferation but not differintiaof pre-osteoblastic 2T9 cells, inhibits proliferation and stimulates differentiation of osteoblast-like MG63 cells, and in- creases proliferation and differetiation of normal human osteoblast NHOst cells. J. Periodontol. 71 : 1287-1296,2000
  55. Zitzmann, N. U., Naef, R., and Scharer, P. : Resorbable versus nonresorbable mem- branes in combination with Bio-Oss for guided bone regeneration. Int. J. Oral Maxillofac. Implants, 12 : 844-852, 1997
  56. Zetterstrom, o., Andersson, C., Eriksson, L., Fredriksson, A., Friskopp, J., Heden, G., Jasson, b., Lundgren, T., Nilveus, R., Olsson, A., Penvert, S., Salonen, L., Sjostrom, L., Winell, A., Ostgren, A., and Gestrelius, S. : Clinical safety of enamel matrix derivative ($EMDOGAIN^{\circledR}$) in the treatment of periodontal defects. J. Clin, Periodontol. 24: 697-704, 1997
  57. Casati, M. Z., Sallum, E.A., Caffesse, R.G., and Sallum, A.W. : Enamel matrix derivative and bone healing after guided bone regeneration in dehiscencetype defects around implants. A histomorphometric st- udy in dogs. J. Periodontol. 73: 789-796, 2002
  58. Heijl, L. : Periodontal regeneration with enamel matrix derivative in one human experimental defect. J. Clin. Periodontol. 24: 693-694, 1997
  59. Schimid, J., Wallkamm, B., Hammerle, CHF., Gogolewski, S., and Lang, N.P. : The significance of angiogenesis in guided bone regeneration. A case report of a rabbit experiment. Clin, Oral. Impants Res. 8 : 244-248, 1997
  60. Schmitz, J. P., Hollinger, J. O. : The critical size defect as an experimental model for craniomandibulofacial nonunions. Clin. Orthop. 205 : 299-308, 1986
  61. Frame, J. W. : A convenient animal model for testing bone substitute materials. J. Oral. Surg, 38(3) : 176-180, 1980