References
-
Ansys 6.1 (2002), "Documentation"
$Copyright {\copyright}$ 1971, 1978, 1982, 1985, 1987, 1989, 1992-2002 by SAS IP as an unpublished work. - Ait-Moussa, A. (1989), "Modelisation et etude des singularites d'un joint colle", Thesis, Universite Montpellier II.
- Bayada, G. and Lhalouani, K. (2001), "Asymptotic and numerical analysis for unilateral contact problem with Coulomb's friction between an elastic body and a thin elastic soft layer", Asymptotic Analysis, 25, 329-362.
- Eckhaus, W. (1979), Asymptotic Analysis of Singular Perturbations, North-Holland, Amsterdam.
- Hjiaj, M., De Saxce, G. and Mroz, Z. (2002), "A variational inegality-base formulation of the frictional law with non-associated sliding rule", European Journal Mechanics A/Solids, 21, 49-59. https://doi.org/10.1016/S0997-7538(01)01183-4
- Klarbring, A. (1991), "Derivation of the adhesively bonded joints by the asymptotic expansion method", Int. J. Eng. Science, 29, 493-512. https://doi.org/10.1016/0020-7225(91)90090-P
- Lebon, F., Ould Khaoua, A. and Licht C. (1998), "Numerical study of soft adhesively bonded joints in finite elasticity", Computational Mechanics, 21, 134-140. https://doi.org/10.1007/s004660050289
- Licht, C. and Michaille, G. (1997), "A modelling of elastic adhesive bonded joints", Advances in Mathematical Sciences and Applications, 7, 711-740.
- Nguyen,Q.S. (1973), "Materiaux elasto-visco-plastique et elastoplastique a potentiel generalise", Comptes Rendus de lAcademie des Sciences, 277, 915-918.
- Suquet, P. (1988), "Discontinuities and plasticity", Nonsmooth Mechanics and Applications, J.J. Moreau and P.D. Panagiotopoulos Eds., CISM Courses and Lectures, Springer-Verlag, 302, 279-340.
Cited by
- Imperfect interfaces as asymptotic models of thin curved elastic adhesive interphases vol.51, 2013, https://doi.org/10.1016/j.mechrescom.2013.04.008
- Asymptotic Study on a Soft Thin Layer: The Non-Convex Case vol.15, pp.1, 2008, https://doi.org/10.1080/15376490701410521
- Homogenization methods for interface modeling in damaged masonry vol.46, pp.1, 2012, https://doi.org/10.1016/j.advengsoft.2010.09.009
- First-Order Numerical Analysis of Linear Thin Layers vol.74, pp.4, 2007, https://doi.org/10.1115/1.2424716
- Asymptotic modeling of quasi-brittle interfaces vol.87, pp.19-20, 2009, https://doi.org/10.1016/j.compstruc.2008.12.002
- Asymptotic analysis of a thin interface: The case involving similar rigidity vol.48, pp.5, 2010, https://doi.org/10.1016/j.ijengsci.2009.12.001
- A model of imperfect interface with damage vol.52, pp.8, 2017, https://doi.org/10.1007/s11012-016-0520-1
- Towards nonlinear imperfect interface models including micro-cracks and smooth roughness vol.9, pp.1-2, 2017, https://doi.org/10.1007/s12356-017-0047-8
- Derivation of a model of imperfect interface with finite strains and damage by asymptotic techniques: an application to masonry structures 2018, https://doi.org/10.1007/s11012-017-0765-3
- Asymptotic behavior of a hard thin linear elastic interphase: An energy approach vol.48, pp.3-4, 2011, https://doi.org/10.1016/j.ijsolstr.2010.10.006
- Numerical investigations on the osseointegration of uncemented endoprostheses based on bio-active interface theory vol.50, pp.3, 2012, https://doi.org/10.1007/s00466-011-0635-0
- Modeling Elastic Properties of Composites using Asymptotic Averaging Method with Imperfect Interface vol.13, pp.2, 2004, https://doi.org/10.1134/s2070048221020150