DOI QR코드

DOI QR Code

Asymptotic analysis of Mohr-Coulomb and Drucker-Prager soft thin layers

  • Lebon, F. (Laboratoire Mecanique Materiaux Structures, Universite Claude Bernard Lyon 1) ;
  • Ronel-Idrissi, S. (Laboratoire Mecanique Materiaux Structures, Universite Claude Bernard Lyon 1)
  • Received : 2003.07.19
  • Accepted : 2004.04.08
  • Published : 2004.04.25

Abstract

This paper deals with the asymptotic analysis of Mohr-Coulomb and Drucker-Prager soft thin layers bonded with elastic solids. In the first part, a mathematical analysis shows how to obtain an interface law that replaces mechanically and geometrically the thin layer. This law is strongly non-linear and couples microscopic and macroscopic scales. In the second part of the paper, the microscopic terms are quantified numerically, and it is shown that they can be neglected.

Keywords

References

  1. Ansys 6.1 (2002), "Documentation" $Copyright {\copyright}$ 1971, 1978, 1982, 1985, 1987, 1989, 1992-2002 by SAS IP as an unpublished work.
  2. Ait-Moussa, A. (1989), "Modelisation et etude des singularites d'un joint colle", Thesis, Universite Montpellier II.
  3. Bayada, G. and Lhalouani, K. (2001), "Asymptotic and numerical analysis for unilateral contact problem with Coulomb's friction between an elastic body and a thin elastic soft layer", Asymptotic Analysis, 25, 329-362.
  4. Eckhaus, W. (1979), Asymptotic Analysis of Singular Perturbations, North-Holland, Amsterdam.
  5. Hjiaj, M., De Saxce, G. and Mroz, Z. (2002), "A variational inegality-base formulation of the frictional law with non-associated sliding rule", European Journal Mechanics A/Solids, 21, 49-59. https://doi.org/10.1016/S0997-7538(01)01183-4
  6. Klarbring, A. (1991), "Derivation of the adhesively bonded joints by the asymptotic expansion method", Int. J. Eng. Science, 29, 493-512. https://doi.org/10.1016/0020-7225(91)90090-P
  7. Lebon, F., Ould Khaoua, A. and Licht C. (1998), "Numerical study of soft adhesively bonded joints in finite elasticity", Computational Mechanics, 21, 134-140. https://doi.org/10.1007/s004660050289
  8. Licht, C. and Michaille, G. (1997), "A modelling of elastic adhesive bonded joints", Advances in Mathematical Sciences and Applications, 7, 711-740.
  9. Nguyen,Q.S. (1973), "Materiaux elasto-visco-plastique et elastoplastique a potentiel generalise", Comptes Rendus de lAcademie des Sciences, 277, 915-918.
  10. Suquet, P. (1988), "Discontinuities and plasticity", Nonsmooth Mechanics and Applications, J.J. Moreau and P.D. Panagiotopoulos Eds., CISM Courses and Lectures, Springer-Verlag, 302, 279-340.

Cited by

  1. Imperfect interfaces as asymptotic models of thin curved elastic adhesive interphases vol.51, 2013, https://doi.org/10.1016/j.mechrescom.2013.04.008
  2. Asymptotic Study on a Soft Thin Layer: The Non-Convex Case vol.15, pp.1, 2008, https://doi.org/10.1080/15376490701410521
  3. Homogenization methods for interface modeling in damaged masonry vol.46, pp.1, 2012, https://doi.org/10.1016/j.advengsoft.2010.09.009
  4. First-Order Numerical Analysis of Linear Thin Layers vol.74, pp.4, 2007, https://doi.org/10.1115/1.2424716
  5. Asymptotic modeling of quasi-brittle interfaces vol.87, pp.19-20, 2009, https://doi.org/10.1016/j.compstruc.2008.12.002
  6. Asymptotic analysis of a thin interface: The case involving similar rigidity vol.48, pp.5, 2010, https://doi.org/10.1016/j.ijengsci.2009.12.001
  7. A model of imperfect interface with damage vol.52, pp.8, 2017, https://doi.org/10.1007/s11012-016-0520-1
  8. Towards nonlinear imperfect interface models including micro-cracks and smooth roughness vol.9, pp.1-2, 2017, https://doi.org/10.1007/s12356-017-0047-8
  9. Derivation of a model of imperfect interface with finite strains and damage by asymptotic techniques: an application to masonry structures 2018, https://doi.org/10.1007/s11012-017-0765-3
  10. Asymptotic behavior of a hard thin linear elastic interphase: An energy approach vol.48, pp.3-4, 2011, https://doi.org/10.1016/j.ijsolstr.2010.10.006
  11. Numerical investigations on the osseointegration of uncemented endoprostheses based on bio-active interface theory vol.50, pp.3, 2012, https://doi.org/10.1007/s00466-011-0635-0
  12. Modeling Elastic Properties of Composites using Asymptotic Averaging Method with Imperfect Interface vol.13, pp.2, 2004, https://doi.org/10.1134/s2070048221020150