DOI QR코드

DOI QR Code

A parametric study of indicial function models in bridge deck aeroelasticity

  • Borri, C. (CRIACIV, Dipartimento di Ingegneria Civile, Universita degli Studi di Firenze) ;
  • Costa, C. (CRIACIV, Dipartimento di Ingegneria Civile, Universita degli Studi di Firenze)
  • Received : 2003.10.31
  • Accepted : 2004.08.30
  • Published : 2004.12.25

Abstract

In common approaches, bridge dynamics under wind action is analyzed by modeling the interaction between fluid and structure by means of transient wind loads acting over the structure itself. Amid various possible manners to describe such types of loads, a representation based on families of 'indicial functions' is adopted here. The aim is to investigate its flexibility to capture the main features of wind-bridge interaction. A set of coefficients is involved in indicial functions. The values that one may attribute to them suffer uncertainties coming from experimental errors affecting data. Here, the sensitivity of a 2-DOF schematic model to the variations of these coefficients is investigated at fixed values of dynamic derivatives and for various types of indicial functions. It is shown how parameter variations influence phase portraits.

Keywords

References

  1. Bisplinghoff, R.L., Ashley, H. and Halfman, R.L. (1996), Aeroelasticity, Dover Publications, Inc., New York.
  2. Boonyapinyo, V., Miyata, T. and Yamada, H. (1999), "Advanced aerodynamic analysis of suspension bridges bystate-space approach", J. Struct. Eng., 125, 1357-1373. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:12(1357)
  3. Borri, C. and Hoeffer, R. (2000), "Aeroelastic wind forces on flexible girders", Meccanica, 35(10), 1-15. https://doi.org/10.1023/A:1004729423318
  4. Borri, C., Costa, C. and Zahlten, W. (2002), "Non-stationary flow forces for the numerical simulation ofaeroelastic instability of bridge decks", Comp. Struct., 80, 1071-1079. https://doi.org/10.1016/S0045-7949(02)00066-4
  5. Borri, C. and Costa, C. (2004), "Quasi-steady analysis of a bridge deck element", Comp. Struct., 82, 993-1006. https://doi.org/10.1016/j.compstruc.2004.03.019
  6. Bucher, C.G. and Lin, Y.K. (1989), "Stochastic stability of bridges considering coupled modes", J. Ind. Aerodyn.,91, 609-636.
  7. Caracoglia, L. and Jones, N.P. (2003), "Time domain vs. frequency domain characterization of aeroelastic forcesfor bridge deck sections", J. Wind Eng. Ind. Aerodyn., 91, 371-402. https://doi.org/10.1016/S0167-6105(02)00399-9
  8. Caracoglia, L. and Jones, N.P. (2003), "A methodology for the experimental extraction of indicial functions forstreamlined and bluff deck sections", J. Wind Eng. Ind. Aerodyn., 91, 609-636. https://doi.org/10.1016/S0167-6105(02)00473-7
  9. Chen, X., Matsumoto, M. and Kareem, A. (2000), "Time domain flutter and buffeting response. Analysis ofbridges", J. Eng. Mech. ASCE, 126(1), 7-16. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:1(7)
  10. Ding, L. and Lee, N.P. (2000), "Computer simulation of buffeting actions of suspension bridges under turbulentwind and bluff deck sections", Comp. Struct., 76, 609-636.
  11. Falco, M., Gasparetto, M. and Scaramelli, F. (1978), "Ricerca sul comportamento aeroelastico dei ponti sospesi agrande luce", Technical Report - Politecnico di Milano.
  12. Fung, Y.C. (1968), An Introduction to the Theory of Aeroelasticity, Dover Publications, Inc., New York, 206-216.
  13. Jones, R.T. (1938), "Operational treatment of the nonuniform-lift theory in airplane dynamics", NACA Report667, U.S. National Advisory Committee for Aeronautics, Langley, VA, U.S.A.
  14. Jones, R.T. (1939), The Unsteady Lift of a Finite Wing, NACA Report 682, U.S. National Advisory Committeefor Aeronautics, Langley, VA, U.S.A.
  15. Lin, Y.K. and Li, Q.C. (1993), "New stochastic theory for bridge stability in turbulent flow", J. Eng. Mech.,119(1), 113-127. https://doi.org/10.1061/(ASCE)0733-9399(1993)119:1(113)
  16. Sarkar, P.P., Jones, N.P. and Scanlan, R.H. (1994), "Identification of aeroelastic parameters of flexible bridges", J.Eng. Mech. ASCE, 120(8), 1718-1742. https://doi.org/10.1061/(ASCE)0733-9399(1994)120:8(1718)
  17. Scanlan, R.H. and Tomko, J.J. (1971), "Airfoil and bridge deck flutter derivatives", J. Eng. Mech. ASCE, 97,1717-1737.
  18. Scanlan, R.H., Béliveau, J. and Budlong, K.S. (1974), "Indicial aerodynamic functions for bridge decks", J. Eng.Mech. Div. ASCE, 100-EM4, 657-670.
  19. Scanlan, R.H. (2000), "Motion-related body-force functions in two-dimensional low-speed flow", J. Fl. Struct.,14, 49-63. https://doi.org/10.1006/jfls.1999.0252
  20. Wagner, H. (1925), "Über die Entstehung des dynamischen Auftriebes von Tagflügeln", Z. Angew. Math. Mech.,Bd. 5-Helft 1.
  21. Zhang, X., Brownjohn, J.M.W. and Omenzetter, P. (2003), "Time domain formulation of self-excited forces onbridge deck for wind tunnel experiment", J. Wind Eng. Ind. Aerodyn., 91, 723-736. https://doi.org/10.1016/S0167-6105(02)00476-2