Soil Properties Affecting C-type slope as a Parameter for Silica Sorption of Soils

토양의 규산 흡착 지표인 C-type slope에 영향을 미치는 토양 특성

  • Lee, Sang Eun (Department of Plant Resources Science, Hankyong University) ;
  • Lim, Woo Jin (Department of Plant Resources Science, Hankyong University) ;
  • Ahn, Jae Ho (Department of Plant Resources Science, Hankyong University) ;
  • Kim, Jeong-Gyu (Division of Environmental Science and Ecological Engineering, Korea University) ;
  • Lim, Soo-Kil (Division of Environmental Science and Ecological Engineering, Korea University)
  • 이상은 (한경대학교 식물자원학과) ;
  • 임우진 (한경대학교 식물자원학과) ;
  • 안재호 (한경대학교 식물자원학과) ;
  • 김정규 (고려대학교 환경생태공학부) ;
  • 임수길 (고려대학교 환경생태공학부)
  • Received : 2004.11.16
  • Accepted : 2004.12.13
  • Published : 2004.12.30

Abstract

To invesligate the characteristics of silica sorption on soils silica sorption experiments were conducted with 9 soils at 4 pH levels (5, 6, 7, and 8). Silica sorption increased in great extent with increase of pH. At the same pH level silica sorption increased linearly with increase of equilibrium $SiO_2$ concentration. Silica sorption characteristics was C-type. The C-type slope, i.e., the slope of linear regression of silica sorption isotherm, increased exponentially with increase of pH in all soils. Log(C-type slope) increased linearly with increase of pH in all soils. The slopes of linear regression were similar in most soils from 0.29 to 0.34 except Sachon and Jonggog soil. None of the soil properties showed any correlation with the slope of linear regression of Log(C-type slope) to pH. Only $Fe_o$ (oxalate extractable Fe oxides) was significantly correlated with the Log(C-type slope) at pH 7 in simple correlation analysis, and was shown to be the principal contributor as determined by standardized multiple linear regression.

토양의 규산흡착 지표인 C-type slope에 영향하는 토양 특성을 탐색하고자, 모재가 상이한 8개 토양에 대하여 pH 5, 6, 7 및 8의 4개 수준에서 등온흡착실험을 하였다. 등온흡착실험결과 규산흡착량은 같은 평형농도에서 pH 증가에 따라 큰 폭으로 증가하였다. 같은 pH조건에서 규산흡착량은 평형농도의 증가에 따라 직선적으로 증가하였으며, 규산의 등온흡착형태는 C-type이었다. 등온흡착의 직선회귀 기울기인 C-tyre slope는 모든 토양에서 pH 증가에 따라 지수 함수적으로 증가하였다. Log(C-type slope)는 pH가 높아짐에 따라 모든 토양에서 고도의 유의성이 있게 직선적으로 증가하였으며, 토양별 직선회귀 기울기가 사촌통과 종곡통 외에는 0.29-0.34 범위로 유사하였다. 각 토양의 pH 변화에 따른 Log(C-type slope)의 직선회귀 기울기들은 대부분 토양특성들과 상관관계를 보이지 않았다. pH 7에서의 Log(C-type slope)와는 $Fe_o$ (oxalate 추출 Fe)만이 유의성이 있는 상관관계가 있었으며, 다중회귀 분석 결과도 여러 가지 토양특성들 중에서 $Fe_o$만이 유의성이 있는 기여도를 나타내었다.

Keywords

References

  1. Amarasiri, S. L., and Perear, W. R. 1975. Nutrient removal by crops in the dry zone of Sri Lanka. Trop. Agric. 133:39-49
  2. Bertsch, P. M., and P. R. Bloom. 1996. Aluminum. p. 517-550. In D. L. Sparks (ed.) Methods of soil analysis. Part 3. Chemical methods. Soil Sci. Soc. Am., Madison, WI, USA
  3. Dixon J. B., and S. B. Weed. 1989. Minerals in Soil Environments (2nd ed.) p. 331-427. Soil Sci. Soc,. Am., Madison, WI, USA
  4. Giles, C. H., D. Smith, and A. Huitsen. 1974. A general treatment and classification of the solute sorption isotherm. J. Colloid Interface Sci. 47:755-765 https://doi.org/10.1016/0021-9797(74)90252-5
  5. Hingston F. J., A. M. Posner, and J. P. Quirk. 1972. Anion adsorption by goethite and gibbsite. 1. The role of proton in determining adsorption envelop. J. Soil Sci. 23:177-192 https://doi.org/10.1111/j.1365-2389.1972.tb01652.x
  6. Hingston, F. J., and M. Raupach. 1967. The reaction between monosilicic acid and aluminium hydroxide. I. Kinetics of adsorption of silicic acid by aluminium hydroxide. Aust. J. Soil Res. 5:295-309 https://doi.org/10.1071/SR9670295
  7. Hsu, P. H. 1989. Aluminum hydroxide and oxyhydroxide. p. 331-378. In J. B. Dixon and S. B. Weed (ed.) Minerals in Soil Environments (2nd ed.) Soil Sci. Soc. Am., Madison, WI, USA
  8. Iler, R. K. 1979. The chemistry of silica. Wiley-Interscience, New York, USA
  9. Lee, S. E., and H. U. Neue. 1992. Effects of pH and redox condition on silica sorption in submerged soils. J. Korean Soc. Soil Sci. Fert. 25:107-112
  10. Lee, S. E., and K. Y. Jung. 1996. Two stage process mechanism of silica adsorption by soil in adsorption kinetics. J. Korean Soc. Soil Sci. Fert. 29:107-112
  11. Loeppert R. L., and W. P. Inskeep. 1996. Iron. p. 639-664. In D. L. Sparks (ed.) Methods of soil analysis. Part 3. Chemical methods. Soil Sci. Soc. Am., Madison, WI, USA
  12. McBride, M. B. 1994. Environmental chemistry of soils. Oxford Univ. Press, Oxford, NY, USA
  13. McKeague. J. A., and M. G. Cline. 1963. Silica in soil solution (II) The adsorption of monosilicic acid by soil and by other substances. Can. J. Soil. Sci. 43:83-96 https://doi.org/10.4141/cjss63-011
  14. Miller, D. M., M. E. Summer, and W. P. Miler. 1989. A comparison of batch and flow-generated anion adsorption isotherms. Soil Sci. Soc. Am. J. 53:373-380 https://doi.org/10.2136/sssaj1989.03615995005300020010x
  15. NIAST. 1988. Methods of soil chemical analysis. National Institute of Agricultural Science and Technology, Rural Development Administration, Suwon, Korea
  16. Park, C. S. 1970. Studies on the relation between available silica content and the effect of silicate, the distribution pattern of available silica content and requirement in Korean paddy top soil. RDA Journal of Agricultural Research (Plant Environment). 13:1-29
  17. Patrick, W. J. Jr., D. S. Mikkelsen, and B. R. Wells. 1985. Plant nutrient behaviour in flooded soil. In Fertilizer technology and use (3rd ed.) Soil Sci. Soc. Am., Madison, WI, USA
  18. Young D. P., and Y. S. Kim. 1971. Increased yielding effect of silica on rice grown on Akioki soil. J. Korean Soc. Soil Sci. Fert. 4:1-10