DOI QR코드

DOI QR Code

Growth of SiO2 nanowire by Vapor Phase Evaporation

기상휘발법에 의한 이산화규소 나노와이어의 성장

  • Rho Dae-Ho (Korea University, Department of Materials Science and Engineering) ;
  • Kim Jae-Soo (Korea Institute of Science and Technology, Metal Processing Research Center) ;
  • Byun Dong-Jin (Korea University, Department of Materials Science and Engineering) ;
  • Lee Jae-Hoon (Korea Institute of Industrial Technology, Advanced Materials Center) ;
  • Yang Jae-Woong (Dajin University, Department of Advanced Materials Science and Technology) ;
  • Kim Na-Ri (Korea University, Department of Materials Science and Engineering) ;
  • Cho Sung-Il (Korea University, Department of Materials Science and Engineering)
  • 노대호 (고려대학교 재료공학과) ;
  • 김재수 (한국과학기술연구원 금속공정연구센터) ;
  • 변동진 (고려대학교 재료공학과) ;
  • 이재훈 (한국생산기술연구원 신소재본부) ;
  • 양재웅 (대진대학교 신소재공학과) ;
  • 김나리 (고려대학교 재료공학과) ;
  • 조성일 (고려대학교 재료공학과)
  • Published : 2004.07.01

Abstract

$SiO_2$ nanowires were synthesized using the vapor evaporation method. Grown nanowires had a different shapes by kind of substrates. Diameters and lengths of the nanowires increased with increasing growth temperature and time. Mean diameters and lengths of $SiO_2$ nanowire were different by kind of substrates. These variations were attributed to nanowire densities on the substrates. The kind of substrates affected microstructure and PL properties of grown nanowires. In case of $Al_{2}O_3$ and quartz substrates, additional $O_2$ were supported during growth stages, and made a nucleation site. Therefore relative narrow nanowire was grown on $Al_{2}O_3$ and quartz substrates. Optical property were measured by photoluminescence spectroscopy. Relatively broad peak was obtained and mean peak positioned at 450 and 420nm. however in case of quartz substrates, mean peak positioned at 370nm. These peak shift was contributed to the size and substrate effects.

Keywords

References

  1. Iijima, S., 1991, 'Helical Microtubules of Graphitic Carbon,' Nature, Vol. 254, pp. 56-58 https://doi.org/10.1038/354056a0
  2. I. J. Li, X. L. Chen, H. J. Li and Y. D. Xu, J. Cryst. Gr., 236, 71 (2002) https://doi.org/10.1016/S0022-0248(01)02162-5
  3. D. H. Rho, J. S. Kim, D. J. Byun, J. W. Yang and N. R. Kim, Kor. J. Mater. Res., 13(6), 404 (2003) https://doi.org/10.3740/MRSK.2003.13.6.404
  4. N. R. Kim, J. S. Kim, D. J. Byun, D. H. Rho and J. W. Yang, Kor. J. Mater. Res., 13(10), 668 (2003) https://doi.org/10.3740/MRSK.2003.13.10.668
  5. C. H. liang, L. D. Zhang, G. W. Meng, Y. W. Wang and Z. Q. Chu, J. Non-Cryst. Solids, 277(1), 63 (2000) https://doi.org/10.1016/S0022-3093(00)00296-9
  6. D. P. Yu, Q. L. Hong, Y. Ding, H. Z. Zhang, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian G. G. Xiong and S. Q. Feng, Appl. Phys. Lett., 73(21), 3076 (1988) https://doi.org/10.1063/1.122677
  7. Z. Q. Liu, S. S. Xie, L. F. Sun, D. S. Tang, W. Y. Zhou, C. Y. Wang, W. Liu, Y. B. Li, X. P. Zou and G. Wang, J. Mater, Res., 16(3), 683 (2001) https://doi.org/10.1557/JMR.2001.0102
  8. X. C. Wu, W. H. Song, K. Y. Wang, T. Hu, B. Zhao, Y. P. Sun and J. J. Du, Chem. Phys. Lett., 336(1), 53 (2001) https://doi.org/10.1016/S0009-2614(01)00063-X
  9. H. Takikawa, M. Yatsuki and T. Sakakibara, Jpn. J. Appl. Phys., 38, L401 (1999) https://doi.org/10.1143/JJAP.38.L401
  10. Z. L. Wang, R. P. Ga, Z. L. Gole and J. D. Stout. Adv. Mater., 12(24), 1938 (2000) https://doi.org/10.1002/1521-4095(200012)12:24<1938::AID-ADMA1938>3.0.CO;2-4
  11. Z. W. Pan, Z. R. Dai, C. Ma and Z. L. Wang, J. Am. Chem. Soc., 124, 1817 (2002) https://doi.org/10.1021/ja017284n
  12. E. I. Givargizov, J. Cryst. Gr., 31, 20 (1975) https://doi.org/10.1016/0022-0248(75)90105-0
  13. D. H. Rho, J. S. Kim, D. J. Byun, J. W. Yang and N. R. Kim, Kor. J. Mater. Res., 13(10), 677 (2003) https://doi.org/10.3740/MRSK.2003.13.10.677
  14. X, T. Zhou, H. L. Lai, H. Y. Peng, F. C. K. Au, L. S. Liao. N. Wang, I. Bello, C. S. Lee and S. T. Lee, Chem. Phys. Lett., 318(1), 58 (2000) https://doi.org/10.1016/S0009-2614(99)01398-6
  15. Z. W. Pan, S. S. Xie, L. E Sun and G. Wang, Chem. Phys. Lett., 299, 97 (1999) https://doi.org/10.1016/S0009-2614(98)01240-8
  16. C. J. Lee, J. H. Park and J. Park, Chem. Phys. Lett., 323, 560 (2000) https://doi.org/10.1016/S0009-2614(00)00548-0
  17. H. Yumoto, R. R. Hasiguti, T. Watanabe and J. Igota, J. Cryst. Gr., 87, 1 (1998) https://doi.org/10.1016/0022-0248(88)90337-5
  18. H. J. Li, Z. J. Li, A. L. Meng, K. Z. Li, X. N. Zhang and Y. P. Xu. J. Alloys and Compounds, 352(2), 279 (2003) https://doi.org/10.1016/S0925-8388(02)01111-8
  19. J. Q. Hul, Y. Jiang, X. M. Neng, C. S. Lee and S. T. Lee, Chem. Phys. Lett., 367, 339 (2003) https://doi.org/10.1016/S0009-2614(02)01697-4
  20. J. J. Wu, T. C. Weng and C. C, Yu, Adv. Mater., 14, 1643 (2002) https://doi.org/10.1002/1521-4095(20021118)14:22<1643::AID-ADMA1643>3.0.CO;2-Y
  21. T. V. Tirchnska, M. M. Rodriquez, A. V. Hemadez and K. W. Cheah, J. Luminescence, 102, 551 (2003) https://doi.org/10.1016/S0022-2313(02)00604-X
  22. T. V. Tirchnska, M. M. Rodriquez and L. Y. Khomenkova, Surface Science, 532, 1204 (2003) https://doi.org/10.1016/S0039-6028(03)00483-7