DOI QR코드

DOI QR Code

Complete Mitochondrial Genome Sequence and Genetic Diversity of Duroc Breed

돼지 Duroc 품종에서 미토콘드리아 유전체 서열의 특성과 집단의 유전적 다양성

  • Cho, 1.C. (National Institute of Subtropical Agriculture, R.D.A.) ;
  • Han, S.H. (National Institute of Subtropical Agriculture, R.D.A.) ;
  • Choi, Y.L. (National Institute of Subtropical Agriculture, R.D.A.) ;
  • Ko, M.S. (National Institute of Subtropical Agriculture, R.D.A.) ;
  • Lee, J.G (Division of Applied Life Science, Gyeongsang National University) ;
  • Lee, J.H (Division of Animal Science and Resources, Chungnam National University) ;
  • Jeon, J .T (Division of Applied Life Science, Gyeongsang National University)
  • 조인철 (농촌진흥청 난지농엽연구소) ;
  • 한상현 (농촌진흥청 난지농엽연구소) ;
  • 최유림 (농촌진흥청 난지농엽연구소) ;
  • 고문석 (농촌진흥청 난지농엽연구소) ;
  • 이정규 (경상대학교 응용생명과학부) ;
  • 이준헌 (충남대학교 통물자원학부) ;
  • 전진태 (경상대학교 응용생명과학부)
  • Published : 2004.12.31

Abstract

Duroc is widely used to improve the meat quality and productivity. To elucidate the phylogenetic relation and the sequence specificity for the maternal property, the complete sequence of mitochondrial genome was determined and the population diversity of Duroc was investigated in this study. The length of mtDNA tested is 16,584-bp. There are several insertion/deletion mutations in the control region and coding regions for tRNA and rRNA, respectively, but not in peptide-coding regions. Four peptide-coding genes(COⅡ, COⅢ, ND3 and ND4) showed incomplete termination codon sequences such as T--, and two(ND2 and ND4L) did alternative initiation codons(AIC), respectively. Especially, the initiation codon sequences of ND2 gene were polymorphic in this population. Polymorphisms were detected in 11-bp duplication motif within control region as well as ND2 and CYTB. Variation patterns observed from the tests on three mtDNA regions were linked completely and then two haplotypes obtained from combining the data dividing this population. Duroc mtDNA is observed at the European pig cluster in the phylogenetic tree, however, the results from the population analyses supported previous opinions. This study suggests that the breed Duroc was mainly originated from the European pig lineage, and Asian lineage was also used to form the pig breed Duroc as maternal progenitors.

Duroc 품종은 돼지 사육에 있어 산육성과 육질 향상을 위해 이용되고 있다. 본 연구는 육종에 많이 이용되는 Duroc 품종의 모계 특이적인 서열의 검색과 계통유전학적 유연관계의 정립을 위하여 미토콘드리아 유전체의 전체 염기서열을 결정하고 집단 내 다형성을 조사하였다. mtDNA 전체 서열의 길이는 16,584-bp 이고, D-loop과 tRNA, rRNA 유전자 영역에서는 삽입/결실이 확인되었다. 4개의 coding gene (COⅡ, COⅢ, ND3, ND4)에서 불완전한 종결코돈을, ND4L과 ND2 유전자는 선택적 개시코돈 양상을 보였다. Duroc 집단에 대한 분석 결과 조절영역에서의 특이적인 11-bp 중복 단위가 일부 개체(15.2%)에서 발견되었고, ND2의 개시코돈과 CYTB 유전자에서도 다형현상을 보였다. 각각의 유전자 영역에서의 다형성은 서로 연관되어 있었고, 그 결과 Duroc 집단은 크게 두 가지 haplotype으로 구분되었다. 계통수에서 Duroc mtDNA 서열은 유럽계열 cluster에 위치하였으나, haplotype 분석과 기존에 연구결과들을 종합해 보면 Duroc 품종은 여러 모계선조 집단에서 기원한 것으로 보이며, 유럽과 아시아 계열 모두가 품종 형성에 이용된 것으로 사료된다된 것으로 사료된다.

Keywords

References

  1. Alves, E., Ovilo, C, Rodriguez, M. C. and Silio, L. 2003. Mitochondrial DNA sequence variation and phylogenetic relationships among Iberian pigs and other domestic and wild pig populations. Anim. Genet. 34:319-324.
  2. Anderson S., Bankier, A. T., Barrell, B. G., Bruijin, M. H. L., Coulson, A. R., Drouin, J., Eperon, I. C, Nierlich, C. D., Roe, B. A., Sanger, F., Schreier, P. H., Smith, A. J., Staden, R. and Young, I. G. 1981. Sequence and organization of the human mitochondrial genome. Nature 290:457-465. https://doi.org/10.1038/290457a0
  3. Amason, U. and Gullberg, A. 1993. Comparison between the complete mtDNA sequences of the blue and the fin whale, two species that can hybridize in nature. J. Mol. Evol. 37:312-322.
  4. Birren, B., Green, E. D., Klapholz, S., Myers, R. M. and Roskams, J. 1997. Genome analysis: A laboratory manual. Cold Spring Harbor Laboratory Press, USA.
  5. Bokonyi, S. 1974. History of domestic mammals in central and eastern Europe. Academiai Kiado, Budapest.
  6. Brown, W. M., George, M. and Wilson, A. C. 1979. Rapid evolution of animal mitocondrial DNA. Proc. Natl. Acad. Sci. U.S.A. 76:1967-1971.
  7. Cann, R. L., Brown, W. M. and Wilson, A. C. 1984. Polymorphic sites and the mechanism of evolution in human mitochondrial DNA. Genetics 325:31-36.
  8. Coble, M. D., Just, R. S., O'Callaghan, J. E., Letmanyi, I. H., Peterson, C. T., Irwin, J. A. and Parsons, T. J. 2004. Single nucleotide polymorphisms over the entire mtDNA genome that increase the power of forensic testing in Caucasians. Int. J. Legal. Med. In press.
  9. Felsenstein, J. 1993. PHYLIP(Phylogeny Inference Package) ver. 3.572, Computer program distributed by the author, Dept. of Genetics, University of Washington, Seattle, WA.
  10. Giles, R. E., Blanc, H., Cann, H. M. and Wallace, D. C. 1980. Maternal inheritance of hu-man mitochondrial DNA. Proc. Natl. Acad. Sci. U.S.A. 77:6715-6719.
  11. Giuffra, E., Kijas, J. M. H., Amarger, V., Carlborg, O., Jeon, J. T. and Andersson, L. 2000. The origin of the domestic pig: independent domestication and subsequent introgression. Genetics 154:1785-1791.
  12. Janke, A, Magnell, O., Wieczorek, G., Westerman, M. and Amason, U. 2002. Phylogenetic analysis of 18S rRNA and the mitochondrial genomes of the wombat, Vambatus ursinus, and the spiny anteater, Taehyglassus aculeatus: increased support for the Marsupionta hypothesis J. Mol. Evol. 54:71-80.
  13. Jones, G. F. 1998. Genetic aspects of domestication, common breeds and their origin, pp. 17-50 in The Genetics of the Pig, edited by A. Ruvinsky and M. F. Rothschild. CAB International, Oxon, UK.
  14. Kijas, J. M. H. and Andersson, L. 2001. A phy-. logenetic study of the domestic pig estimated from the near-complete mtDNA genome. J. Mol. Evol. 52:302-308.
  15. Kijas, J. M. H., Moller, M., Plastow, G. and Andersson, L. 2001. A frameshift mutation in MCIR and a high frequency of somatic reversions cause black spotting in pigs. Genetics 158:779-785.
  16. Kijas, J. M. H., Wales, R., Tornsten, A., Chardon, P., Moller, M. and Andersson, L. 1998. Melanocortin receptor 1(MCIR) mutations and coat color in pigs. Genetics 150:1177-1185.
  17. Kim, K I., Lee, J. H., Li, K., Zhang, Y. P., Lee, S. S., Gongora, J. and Moran, C. 2002. Phylogenetic relationships of Asian and European pig breeds determined by mitochondrial DNA D-loop sequence polymorphism. Anim. Genet. 33:19-25.
  18. Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparable studies of nucleotide sequences. J. Mol. Evol. 16:111-120.
  19. Lee, J. S., Miya, M., Lee, Y. S., Kim, C. G., Park, E. H., Aoki, Y. and Nishida, M. 2001. The complete DNA sequence of the mitochondrial genome of the self-fertilizing fish Rivulus marmoratus(Cyprinodontiformes, Rivulidae} and the first finding of duplication of control region in fish. Gene 280:1-7.
  20. Lin, C. S., Sun, Y. L. and Liu, C. Y. 1999. Complete nucleotide sequence of pig(Sus scrofa) mitochondrial genome and dating evolutionary divergence within Artiodactyla. Gene 236: 107-114. https://doi.org/10.1016/S0378-1119(99)00247-4
  21. Lopez, J. V., Cevario, S. and O'Brien, S. J. 1996. aComplete nucleotide sequences of the domestic cat(Felis catus) mitochondrial genome and a transposed mtDNA tandem repeat(Numt) in the nuclear genome. Genomics 33:229-246. https://doi.org/10.1006/geno.1996.0188
  22. Okumura, N., Ishiguro, N., Nakano, M., Katsuya, H, Matsui, A. and Sahara, M. 1996. Geographic population structure and sequence divergence in the mitochondrial DNA control region of the Japanese wild boar(Sus scrofa leucomystaxi, with reference to those of domestic pigs. Biochem. Genet. 34:179-189.
  23. Saitou, N. and Nei, M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. BioI. Evol. 4:406-425.
  24. Thompson, J. D., Higgins, D. G. and Gibson, T. J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting position. specific gap penalties and weight matrix choice. Nucl. Acids Res. 22:4673-4680. https://doi.org/10.1093/nar/22.22.4673
  25. Ursing, B. M. and Amason, U. 1998. The complete mitochondrial DNA sequence of the pig(Sus scrofa). J. Mol. Evol. 47:302-306.
  26. Watanabe, T., Hayashi, Y., Ogasawara, N. and Tomita, T. 1985. Polymorphism of mitochondrial DNA in pigs based on restriction endonuclease cleavage patterns. Biochem. Genet. 23: 105-113.
  27. Watanobe, T., Ishiguro, N., Nakano, M., Matsui, A., Hongo, H., Yamazaki, K. and Takahashi, O. 2004. Prehistoric Sado Island populations of Sus scrofa distinguished from contemporary Japanese wild boar by ancient mitochondrial DNA. Zoolog. Sci. 21:219-228.
  28. Wilson, A. C., Cann, L., Carr, S. M., George, M. and Gyllensten, U. B. 1985. Mitochondrial DNA and two perspectives on evolutionary genetics. BioI. J. Linn. Soc. 26:375-400. https://doi.org/10.1111/j.1095-8312.1985.tb02048.x
  29. Yang, J., Wang, J., Kijas, J., Liu, B., Han, H., Yu, M., Yang, H, Zhao, S. and Li, K. 2003. Genetic diversity present within the near-complete mtDNA genome of 17 breeds of indigenous Chinese pigs. J. Hered. 94:381-385.
  30. 조인철, 정용환, 정진관, 성필남, 김병우, 이정규, 전진태. 2003. Single stranded conformation poly-morphism 분석에 의한 돼지 Duroc 품종의 미토콘드리아 DNA 유전적 변이. 한국동물자원과학회지. 45:911-916.