Phonetic Tied-Mixture Syllable Model for Efficient Decoding in Korean ASR

효율적 한국어 음성 인식을 위한 PTM 음절 모델

  • Published : 2004.06.01

Abstract

A Phonetic Tied-Mixture (PTM) model has been proposed as a way of efficient decoding in large vocabulary continuous speech recognition systems (LVCSR). It has been reported that PTM model shows better performance in decoding than triphones by sharing a set of mixture components among states of the same topological location[5]. In this paper we propose a Phonetic Tied-Mixture Syllable (PTMS) model which extends PTM technique up to syllables. The proposed PTMS model shows 13% enhancement in decoding speed than PTM. In spite of difference in context dependent modeling (PTM : cross-word context dependent modeling, PTMS : word-internal left-phone dependent modeling), the proposed model shows just less than 1% degradation in word accuracy than PTM with the same beam width. With a different beam width, it shows better word accuracy than in PTM at the same or higher speed.

Keywords