DOI QR코드

DOI QR Code

LIMIT THEOREMS FOR PARTIAL SUM PROCESSES OF A GAUSSIAN SEQUENCE

  • Choi, Yong-Kab (Department of Mathematics, College of Natural Science Gyeongsang National University) ;
  • Swang, Kyo-Shin (Department of Mathematics, College of Natural Science Gyeongsang National University) ;
  • Moon, Hee-Jin (Department of Mathematics, College of Natural Science Gyeongsang National University) ;
  • Kim, Tae-Sung (Department of Mathematics and Institute of Basic Science Wonkwang University) ;
  • Baek, Jong-Il (Department of Mathematics and Institute of Basic Science Wonkwang University)
  • Published : 2004.11.01

Abstract

In this paper we establish limsup and liminf theorems for the increments of partial sum processes of a dependent stationary Gaussian sequence.

Keywords

References

  1. S. A. Book and T. R. Shore, On large intervals in the Csörgő-Révész theorem on increments of a Wiener process, Z. Wahrsch. Verw. Gebiete 46 (1978), 1–11. https://doi.org/10.1007/BF00535684
  2. Y. K. Choi, Erdös-Rényi-type laws applied to Gaussian processes, J. Math. Kyoto Univ. 31(1) (1991), 191–217. https://doi.org/10.1215/kjm/1250519901
  3. Y. K. Choi, Z. Y. Lin, W. S. Wang, K. S. Hwang and T. S. Kim, Asymptotic behaviors for partial sum processes of a Gaussian sequence, Acta Math. Hungar. 103(1-2) (2004), 43–54. https://doi.org/10.1023/B:AMHU.0000028235.82111.cf
  4. E. Csaki and K. Gonchigdanzan, Almost sure limit theorems for the maximum of stationary Gaussian sequences, Statist. Probab. Lett. 58 (2002), 195–203. https://doi.org/10.1016/S0167-7152(02)00128-1
  5. M. Csorgo, A glimpse of Pál Erdös's impact on probability and statistics, Canad. J. Statist. 30(4) (2002). https://doi.org/10.2307/3316095
  6. M. Csorgo and P. Revesz, Strong Approximations in Probability and Statistics, Academic Press, New York, 1981.
  7. M. Csorgo and J. Steinebach, Improved Erdös-Rényi and strong approximation laws for increments of partial sums, Ann. Probab. 9(6) (1981), 988–996. https://doi.org/10.1214/aop/1176994269
  8. P. Deheuvels and J. Steinebach, Exact convergence rates in strong approximation laws for large increments of partial sums, Probab. Theory Related Fields 76 (1987), 369–393. https://doi.org/10.1007/BF01297492
  9. A. N. Frolov, On one-sided strong laws for large increments of sums, Statist. Probab. Lett. 37 (1998), 155–165. https://doi.org/10.1016/S0167-7152(97)00113-2
  10. L. Horvath and Q. M. Shao, Darling-Erdös-type theorems for sums of Gaussian variables with long-range dependence, Stochastic Process. Appl. 63 (1996), 117–137. https://doi.org/10.1016/0304-4149(96)00053-1
  11. H. Lanzinger and U. Stadtmuller, Maxima of increments of partial sums for certain subexponential distributions, Stochastic Process. Appl. 86 (2000), 307–322. https://doi.org/10.1016/S0304-4149(99)00100-3
  12. M. R. Leadbetter, G. Lindgren and H. Rootzen, Extremes and Related Properties of Random Sequences and Processes, Springer-Verlag, New York, 1983.
  13. W. V. Li and Q. M. Shao, A normal comparison inequality and its applications, Probab. Theory Related Fields 122 (2002), 494–508. https://doi.org/10.1007/s004400100176
  14. Z. Y. Lin, Path properties of Gaussian processes, Zhejiang University Press, 2001.
  15. Z. Y. Lin, On Csörgő-Révész's increments of sums of non-i.i.d. random variables, Scientia Sinica (Series A) 30 (1987), no. 9, 921–931.
  16. Z. Y. Lin, On increments of sums of independent non-identically distributed random variables, Scientia Sinica (Series A) 31 (1988), no. 8, 927–937.
  17. Z. Y. Lin, Y. K. Choi and K. S. Hwang, Some limit theorems on the increments of a multi-parameter fractional Brownian motion, Stochastic Anal. Appl. 19 (2001), no. 4, 499–517. https://doi.org/10.1081/SAP-100002099
  18. Z. Y. Lin and Q. M. Shao, On the limiting behaviors of increments of sums of random variables without moment conditions, Chinese Ann. Math. 14B (1993), no. 3, 307–318.
  19. J. Steinebach, On the increments of partial sum processes with multidimensional indices, Z. Wahrsch. Verw. Gebiete 63 (1983), 59–70. https://doi.org/10.1007/BF00534177
  20. J. Steinebach, Improved Erdos-Renyi and strong approximation laws for increments of renewal processes, Ann. Probab. 14 (1986), no. 2, 547–559. https://doi.org/10.1214/aop/1176992530
  21. W. S. Wang, Self-normalized lag increments of partial sums, Statist. Probab. Lett. 58 (2002), 41–51. https://doi.org/10.1016/S0167-7152(02)00101-3