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LIMIT THEOREMS FOR PARTIAL SUM
PROCESSES OF A GAUSSIAN SEQUENCE

YonG-KAB CHoOI, KYo-SHIN HWANG,
HEE-JIN MoonN, TAE-SuNG KiM AND JONG-IL BAEK

ABSTRACT. In this paper we establish limsup and liminf theorems
for the increments of partial sum processes of a dependent station-
ary Gaussian sequence.

1. Introduction and results

Let {X;; 7 =1,2,...} be a sequence of independent identically dis-
tributed (i.1.d) random variables and let So =0 and S,, = Z?:l X;. For
an integer sequence {an; n=1,2,...} with 1 < a, < n, put

= S — .
Un 19@?35%( ktan — Sk)

Csorgd and Révész [6] obtained the following strong limit law

(1.1) lim — =1 a.s.

n— oo bn

under some conditions of {X;} and {a,}, where {b,; n =1,2,...} is
some sequence of constants. For further various results on this limit law
(1.1) about the sequence of i.i.d. random variables, we refer to ([5], [7],
8], (9], [11], [19], [20], [21]).

On the other hand, Lin ([15], [16], [18]) established large increment
results for a sequence of independent or mixing dependent random vari-
ables. Theoretically and practically, strong dependent sequences are
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important and interesting. Usually one considers the case of Gaussian
sequences.

Horvath and Shao [10] studied extreme value limit distributions for
the maximum of partial sums of a stationary Gaussian sequence with
long-range dependence.

Recently, Csdki and Gonchigdanzan [4] investigated almost sure cen-
tral limit theorems for the maximum of dependent stationary Gaussian
sequences.

In this paper we are interested in the strong limit law types as in
(1.1) about partial sum processes of a dependent stationary Gaussian
sequence. Let {{;;7 = 1,2,...} be a centered stationary Gaussian se-
quence with E€2 = 1 and p, = E(&6140), n > 1. Put Sy = 0,
Sp = Z?=1 ¢ and o(n) = /ES?2. Assume that o(n) can be extended to
a continuous function o(t) of ¢ > 0 which is nondecreasing and regularly
varying with exponent « for some 0 < a < 1. Suppose that {a,;n > 1}
is a sequence of positive integers such that

(i) 1<a,<n.
Denote 3, = {2(log(n/a,) + loglogn)}'/2 for n > e.
Recently, Choi et al. [3] proved the following Theorems A and B.
THEOREM A. Suppose that the sequence {a,; n > 1} satisfies con-
ditions (i) and

(i) limsupa,/n=:1p <1,

n—r0o0
(iii) there exist 0 < po < puy < 1 such that, for any m < n, we have
H1am < @y and paam/m > an/n.
Assume that, for n > 1, either
(iv) pn <0
or
(v) lpn| < o%(n)/n?.

Then we have

S — S,
limsup sup sup M =1 a.s.,

n—oo 0<i<n1<j<an, U(an),@n

S - S
lim sup ——————‘ ntan nl =

n—o0 U(an)ﬂn

Next, consider the case of a limit result.

(1.2)
1 a.s.
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THEOREM B. Suppose that the condition (i) and one of (iv) and (v)
are satisfied. Further suppose that

1 n
(vi) lim log(n/an) =00
n—oo loglogn

Then we have

. |Siv; — Sil _
lim sup sup ————=1 a.s.,
n—00 g<i<n 1<j<an O(0n)0n
(1.3) o
lim sup =t =1  ag

N0 0<Li<n U(Gn)ﬁn
Note that the condition (v) implies that, for n > 1,
—n272L(n) < p, < n?*72L(n),

where L(n) is a slowly varying function.

For the Wiener process {W(t), 0 <t < oo} with independent incre-
ments, Book and Shore [1] proved that liminf results are different from
limsup results if the following condition

log(T/ar) _
T—oo loglogT

of Theorem 1.2.1 in [6] is replaced by

log(T/ar)

= < .
Toeo loglog T " 0s7<oo

On this point of view, the main objective of this paper is to show that
liminf results are different from the results (1.2) and (1.3) for dependent
Gaussian sequences if the condition (vi) is replaced by

log(n/ay)

=, 0<r<oo,
n—oo logg logn

where § = 1 + ¢ for € > 0 small enough.

The main results are as follows:
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THEOREM 1.1. If the condition (i) and

1
(vii) lim M=r, 0<r<wo
n—co loglogn

are satisfied, then we have

|Si+; — Sil <( r )1/2

14 lim inf
(1.4) iminf sup sup T

s a.s.
n—o0 0<i<n 1<j<an U(a/n)ﬂn

The following theorem is straightforward from Theorem 1.1.

THEOREM 1.2. If the condition (i) and

(vii)  lim log(n/an) _

= 0<r<>
n—oo log, logn

are satisfied, then we have

|Si+; — Sil <( r )1/2 as.,

1.5 lim inf
(1.5) iminf sup sup T

n—00 0<i<n 1<j<a. O(@n)BL, T
where (!, = {2(log(n/a,) + logg logn)}/2 for n > e.

THEOREM 1.3. Suppose that conditions (i), (vil)’ and one of (iv)
and (v) are satisfied. Then we have

|Sita, — Sil > ( r )1/2

1.6 lim inf
(1.6) liminf sup T

n—oo o<i<n  0(an)By

Combining Theorems 1.2 and 1.3, we obtain the following liminf re-
sult.

COROLLARY 1.1. Under the assumptions of Theorem 1.3, we have

Q. 1/2
liminf sup sup |94 */9" = ( " )
n—00 0<i<n 1<j<an  O(@n)0B} L+r

. _S 1/2
liminf sup [Si+a, : i = ( r )
n—00  g<i<n U(an)ﬂn 1+7r

a.s.,

(1.7)

a.s.

Note that if 7 = 0o in (vii)’, then (1.3) follows from (1.6) and Theorem
1.1 in Choi et al. [3]; if 0 < r < oo in (vii)’, then (1.7) differs from (1.2)
under conditions (ii), (iii) and (vii)’.
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2. Proofs of main theorems

The following Lemmas 2.1 and 2.2 are used for the proof of Theorem
1.1, and Lemma 2.1 is an analogue of Lemma 2.2 in [3] (See also Lemma
2.2 in [17]).

LEMMA 2.1. For any € > 0, there exists a positive constant ¢, such
that

Sivs — Si 2
P{ sup sup l—ﬂ—|>u}§c€—n—exp(— Y )

0<i<n1<j<a, 0(an) an 2+e

for all w > 1.

The next Lemma 2.2 is obvious.

LEMMA 2.2. Let {£,£,;n > 1} be a sequence of random variables. If
P{& >¢&—0 as n— oo,

then there is a subsequence {&,, } such that

limsupé&,, <¢ a.s.

k— oo
So we have

liminf £, <¢ a.s.

Proof of Theorem 1.1. First, suppose that 0 < r < co. From (vii),
there exists v > 0 such that n/a, > (logn)? for sufficiently large n.
Thus by Lemma 2.1 we have, for any ¢ > 0,

|Sitj — Sl
P{ su su >Vli+te
02itn 12500, 0 (an){210g(n/an)} 1/ j
n 24 2¢ n
< ¢ 2 exp(— log —
= Ce Qn, exp(_ 2+¢ ogan)

< ce(logn)™ /() 0 as n — oco.

It follows from Lemma 2.2 that

o [Si+; — Sil
liminf su su <1 a.s.
nh50 02in 12ean 0(an)(21og(n/a,) /2
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Hence by (vii) we obtain

o Si+i — Si
liminf sup sup |——z—+—3——-—d
n—oo g<i<nl1<j<an O{(0n)Bn

= liminf sup sup [ies = Sil
n=00 0<i<n1<j<an 0(an){2log(n/as)}1/?

( 2log(n/an,) )1/2
2(log(n/an) + loglogn)

< T
a.s.
~“ V147

On the other hand, consider the case r = 0. It follows from (vii) that
for any small € > 0 we have

=< (logn)=/(2+e)
an

(2.1)

for n sufficiently large. Applying Lemma 2.1 again, we get

P{ sup sup M>\/E}

0<i<n1<i<an 0(an)Bn

)—6/(2+€

< ce(logn ) 50 as n— oo

and hence Lemma 2.2 gives

(2.2) liminf sup sup [Si; = Si <0 a.s.
n—oo g<i<ni<j<an, O(@n)0n
Combining (2.1) with (2.2) completes the proof of Theorem 1.1. O

The following Lemmas 2.3-2.5 are essential to prove Theorem 1.3.

LEMMA 2.3. (cf. Corollary 1.2.2in [14]) Let £ = (&) and n = (n:5),
1<i<n,1<j<m, be centered Gaussian random vectors such that

E(&) = E(nZ) for all 4,j,

E(&j&ix) < E(nijnik) for all 4,3, k,

E(&;6k) > E(nymk) for all i #1, jand k.
Then, for all real numbers A;j,

P{ Ao > x)} <P AU > )}

i=1j=1 i=1j=1
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LeMMmA 2.4. ([12], [13]) Let&; (j = 1,2,...,n) be standardized nor-
mal random variables with Cov(§;, ;) = A;; such that 6 = max;; | A
< 1. Then for any real number v and integers 1 <l <ly <--- <l <mn
with k < n, we have

23) P mas &, <u} <@ +e Y olew (- 125,

<<k 1+ |pij
where p;; = Ay, and ¢ = c(§) is a constant independent of n and u,

and ®(u) = [*_ \/% exp(—y?/2) dy.

Under the stationary condition on p;;, we can estimate an upper
bound for the second term of the right hand side of (2.3) as follows:

LEMMA 2.5. ([2]) Let&;, 6, k and p;; be as in Lemma 2.4. Assume
that for some v > 0

lpijl < |i —j|™" forall ©#3j.

Put u = {(2 —n)logk}'/2, where 0 < n < (1 —8)v/(1+v+6). Then
we have

Y= 3 |p..|exp( __L)<ck“5o
' v L+ pil/ — ’

1<i<j<k

where 0g = {v(1-0) —n(1+6+v)}/{(1+v)(1+6)} >0 and cis a
constant independent of n and u.

Proof of Theorem 1.8. (1.6) is obvious when » = 0. In what follows,
we assume that 0 < r < co. For 8 > 1, let

Ay ={n: 0" <n <0507 <an <O,

where k = 1,2,...; { = 1,2,.... The condition (vii)’ implies that, for
sufficiently large k, there exists v > 0 such that

1<1<k+1—~vlog((k—1)logh)/(logh)? =: K
and there exists M > 0 such that

O(k,1) .= [0F""/M] > 1.
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Noting that

lim Y2108(/an) _ { (/1 +m)Y? 0 <1< oo,

n—00 B, 1 ifr=o00

by (vii)’, then (1.6) is proved if we show that

(2.4) liminf sup —1orten = il

>1
n—00 o0<i<n 0(a,)\/2log(n/an) —

By the regular variation of o(-), we have

a.s.

o(0'71) > (0 — 1)"20 (6" — 1)

for some 0 < & < 1. Thus

liminf sup [Sita, — Sl
n—00 0<i<n 0(an)/2log(n/ay)
|Sita, — Sil

v

liminf inf inf sup

k—oo 1<ISK n€Ak0<i<n 0(an)y/210g(n/ay)

.. . |Si+BL - Sz'|
> liminf inf su
~ k>0 15151{09551_1 o(6')/2log 6%~
. : (0 — 1)*|Siv; — Siterl
— limsup inf sup sup
k—o00 1<IKK 0<i<Ok gi-1< <! 0’(9l — el—l)\/ 210g ak_l

(2.5)

First, we will show that, for any small £ > 0,
(2.6) Jy<e a.s.

We claim that, for some R > 2,

(2.7) limsup sup sup  sup [Si+s = Sito] <R as.

k—oo 1<ISK 0<i<ok gl-1<j<ol o(ft — 01=1)4/2log Ok~ —

By the same way as the proof of Lemma 2.1, we can obtain

S — 8.
P{ sup sup |_l+i—;jlol| > u} < cegk—le—uz/@ﬂ‘)
0<i<hk gi-1< <! 0'(9 — 0 )
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for all u > 1. Thus,

P{ sup sup  sup Iﬁi(—";-’jl—wi>R\/210g;9’° ‘}

1<ISKK 0<i<gk gl-1<j<ot O =1

< e Z gkt exp ( —
=1

K
< 6626—2(19—[) < ck—fy/loge‘
=1

8 k-1
s log 6 )

Since y/log § > 1, the Borel-Cantelli lemma implies (2.7), and thus (2.6)
follows if § — 1.
Next, consider J;. For 0 < m < §(k,1), let

S(m) = SmGIM—}—Gl - SmOIM'

It follows from (vii)’ that, for any 0 < € < 1,

Siig — S;
P su i+6 ! <+V1l-—¢
(2.8) {ogigg)’v~1 o(64)\/2log k-t — }

gP{ max S(m)gx/l—e\/iloge(k,l)}.

0<m<a(k,l) o(0)

Assume that (iv) holds. By Lemma 2.3, we have

P{ max ) < {(2 - 2)log H(k, 1)}1/2}

0<m<o(k,l) o(6)
< (@({(2 — 2¢) log O(k, )}1/2))0(k ) <exp(-— c(9k_l)€),

where ¢ is a positive constant. Hence by (2.8) and (2.9), we have

(2.9)

Siver — Si
P{ inf su i+6 <1 -¢
I<ISK o<¢<£«~1 o(61)+/21og k-1 }

—C Ok l) ) < exp(_cks'y/log6>

qu

for all large k. It follows from the Borel-Cantelli lemma that

(2.10) J>1  as
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Consider the case when (v) holds. In this case, we can estimate an
upper bound of the right hand side of (2.8) by Lemmas 2.4 and 2.5.

Define

r(m,m') = Cov(igz)), SU((TZ))), m>m' =0,1,...,0(k,1l)

and let ¢ = m —m’ > 1. Then by (v) we have

r(m, m")]
1
= 02(92)‘lE{fmelM+1§m'olM+1 + o+ ot m1Em ot Mo

+ o Enotmt0tEmigtmr + 0+ Emot Mot Emrot Mot H

1
= o2(6) |Pq91M t oot Pgeimpr-0 o Pt ptei—1 Tt Peeim
< (9l)2 l I < 92! 02(q0lM+1 _9[)
= o2(60) Pao' M+1~0'| = o2(0) (g0'M + 1 - 9i)2
L1 oR((gM -1
= (qM _ 1)2 0'2(0[)

<clgM - 1) % < g7,

where v =1 — a > 0. Applying Lemmas 2.4 and 2.5 for

n

& = UEZ})), m=0,1,...,0(k,1),

w={(2—n)logd(k,))}"?, 7 =2,

lpis| = r(m,m")| <|m—m/|7", m#m/,
then the right hand side of (2.8) is less than or equal to
(®(w)) "™V + c(0(k, 1) ™.

Thus we have

S;ig — S;
P su i1+6 : <+V1l-—¢
{OSigg—l o(6Y)/2log k-t — }

< exp (= c(0°7HE) + (887 "% < c (9
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for all large k. Considering J; in (2.5), we have

Sitot — S;
P inf i+6 % < r—l s
{ 1<L<KO<1<£)’° 1 g(6Y)/21og 6% }

S Zc ek l)—(S() S Ck—'y&,/loge.

Thus the Borel-Cantelli lemma gives (2.10). From (2.5), (2.6) and (2.10),
we obtain (2.4). This completes the proof of Theorem 1.3. O
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