References
-
Christoph Bandt, Self-similar sets V: Integer matrices and fractal tilings of
$R^n$ , Proc. Amer. Math. Soc. 112 (1991), 549–562. https://doi.org/10.1090/S0002-9939-1991-1036982-1 - Ola Bratteli and P. E. T. Jorgensen, Iterated function system and permutation representations of the Cuntz algebra, Mem. Amer. Math. Soc., to appear.
- Ola Bratteli and P. E. T. Jorgensen, Isometries, shifts, Cuntz algebras multiresolution wavelet analysis of scale N, Integral Equ. Operator Theory 28 (1997), 382-443. https://doi.org/10.1007/BF01309155
- O. Bratteli, P. E. T. Jorgensen, and G. L. Price, Endomorpism of B(H), Proceedings of Symposia in prime Mathematics 59 (1996), 93–138.
-
Joachim Cuntz, Simple
$C^{\ast}$ -algebras generated by isometries, Comm. Math. Phys. 57 (1977), 173–185. https://doi.org/10.1007/BF01625776 - Ingrid Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conf. Ser. in Appl. Math. 61 (1992).
-
K. Grochenig and W. R. Madych, Multiresolution analysis, Haar bases, and self-similar tilings of
$R^n$ , IEEE Trans. Inform. Theory 38 (1992), 556–568. https://doi.org/10.1109/18.119723 -
Eui-Chai Jeong, Irreducible representations of the cuntz algebra
$O_n$ , Proc. Amer. Math. Soc. 127 (1999), 3582–3590. https://doi.org/10.1090/S0002-9939-99-05018-2 - Donald E. Knuth, The art of computer programming: Vol. 2: Seminumerical algorithms, 2nd ed., Addison-Wesley Publishing Co., Reading, Mass., 1969.
- M. Laca, Endomorphisms of B(H) and Cuntz algebras, J. Operator Theory 30 (1993), 85–180.
-
J. C. Lagarias and Yang Wang, Integral self-affine tiles in
$R^n$ , II: Lattice tilings, J. Fourier Anal. Appl. 3 (1997), 83–102. https://doi.org/10.1007/BF02647948 - A. M. Odlyzko, non-negative digit sets, Proc. London Math. Soc. 37 (1978), no. 3, 213–229. https://doi.org/10.1112/plms/s3-37.2.213
- B. M. Stewart, Theory of Numbers, The Macmillan Co., New York, 1964.