참고문헌
- J. Baker, J. Lawrence and F. Zorzitto, The stability of the equation f(x+y)=f(x)+f(y), Proc. Amer. Math. Soc. 74 (1979), 242-246. https://doi.org/10.1090/S0002-9939-1979-0524294-6
- C. Borelli, On Hyers-Ulam stability for a class of functional equations, Aequationes Math. 54 (1997), 74-86. https://doi.org/10.1007/BF02755447
- G. L. Forti, Hyers-Ulam stability of functional equations in several variables, Aequationes Math. 50 (1995), 146-190. https://doi.org/10.1007/BF01831117
- R. Ger, Superstability is not natural, Roczik Naukowo-Dydaktyczny WSP W. Krakowie, Prace Mat. 159 (1993), 109-123.
- D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA. 27 (1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
- D. H. Hyers and Th. M. Rassias, Approximate homomorphisms, Aequationes Math. 44 (1992), 125-153. https://doi.org/10.1007/BF01830975
- D. H. Hyers, G. Isac, and Th. M. Rassias, Stability of functional equations in several variables, Birkhauser-Basel-Berlin (1998).
- K. W. Jun, G. H. Kim and Y. W. Lee, Stability of generalized gamma and beta functional equations, Aequationes Math. 60 (2000), 15-24. https://doi.org/10.1007/s000100050132
- S. M. Jung, On the general Hyers-Ulam stability of gamma functional equation, Bull. Korean Math. Soc. 34 (1997), no. 3, 437-446.
- S. M. Jung, On the stability of the gamma functional equation, Results Math. 33 (1998), 306-309. https://doi.org/10.1007/BF03322090
- G. H. Kim and Y. W. Lee, The stability of the beta functional equation, Babes-Bolyai Mathematica, XLV (1) (2000), 89-96.
- Y. W. Lee, On the stability of a quadratic Jensen type functional equation, J. Math. Anal. Appl. 270 (2002), 590-601. https://doi.org/10.1016/S0022-247X(02)00093-8
- Y. W. Lee, The stability of derivations on Banach algebras, Bull. Inst. Math. Acad. Sinica. 28 (2000), 113-116.
- Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
- T. Trif, On the stability of a gamma-type functional equation, to appear.
- S. M. Ulam, "Problems in Modern Mathematics" Chap. VI, Science editions, Wiley, New York (1964).