STABILITY OF A BETA-TYPE FUNCTIONAL EQUATION WITH A RESTRICTED DOMAIN

Young Whan Lee and Byung Mun Choi

ABSTRACT. We obtain the Hyers-Ulam-Rassias stability of a beta-type functional equation

$$f(\varphi(x), \phi(y)) = \psi(x, y)f(x, y) + \lambda(x, y)$$

with a restricted domain and the stability in the sense of R. Ger of the equation

$$f(\varphi(x),\phi(y))=\psi(x,y)f(x,y)$$

with a restricted domain in the following settings:

$$\mid g(\varphi(x), \phi(y)) - \psi(x, y)g(x, y) - \lambda(x, y) \mid \leq \epsilon(x, y)$$

and

$$\mid \frac{g(\varphi(x),\phi(y))}{\psi(x,y),g(x,y)}-1\mid \ \leq \epsilon(x,y).$$

1. Introduction

In 1940, Ulam [16] raised the following question concerning the stability of homomorphism: given a group G_1 , a metric group G_2 with metric (\cdot,\cdot) and $\epsilon > 0$, does there exist a $\delta > 0$ such that if a mapping $f: G_1 \to G_2$ satisfies $d(f(xy), f(x)f(y)) \leq \delta$ for all $x, y \in G_1$, then a homomorphism $g: G_1 \to G_2$ exists with $d(f(x), g(x)) \leq \epsilon$ for all $x \in G_1$? The case of approximately additive mappings was solved by D. H. Hyers [5] under the assumption that G_1 and G_2 are Banach spaces. Th. M. Rassias [14] proved the substantial generalization of the result

Received August 22, 2003.

²⁰⁰⁰ Mathematics Subject Classification: 39B22, 39B72.

Key words and phrases: functional equation, stability of functional equation, Hyers-Ulam-Rassias stability.

This work was supported by grant No. R05-2003-1128-0 (2003) from Korea Science & Engineering Foundation.

of Hyers and also P. Găvruta obtained a further generalization of the Hyers-Ulam-Rassias theorem (see also [3, 7]). Later, many Rassias and Găvruta type theorems concerning the stability of different functional equations were obtained by numerous authors (see, for instance, [1, 2, 4, 6, 12-14]). In this paper we deal with a beta-type functional equation

(1)
$$f(\varphi(x), \phi(y)) = \psi(x, y)f(x, y) + \lambda(x, y).$$

The gamma functional equation and the beta functional equation are example of the equation (1). S. M. Jung [9, 10] investigated the stability of the gamma functional equation. His results have been generalized to the framework of generalized gamma and beta functional equations (see also [8, 11, 15]). The aim of the present note is to give the stability theorem of the equation (1) with a restricted domain, and the stability in the sense of R. Ger of the equation

(2)
$$f(\varphi(x), \phi(y)) = \psi(x, y) f(x, y).$$

Our results are generalizations of theorems established in [8]-[11]. Throughout this paper, let $\varphi:(0,\infty)\to R$ and $\phi:(0,\infty)\to R$ be strictly increasing functions, $\lambda:(0,\infty)\times(0,\infty)\to R$ and $\epsilon:(0,\infty)\times(0,\infty)\to (0,\infty)$ be some functions, and let n_1, n_2 be given nonnegative real numbers. Note that for some function $\varphi, \varphi^0(x) = x$ and $\varphi^n(x) = \varphi(\varphi^{n-1}(x))$ for all x.

2. Hyers-Ulam-Rassias stability of the functional equation (1)

In the following theorem we investigate the Hyers-Ulam-Rassias stability for equations of the form (1) with a restricted domain. This result is a generalization of Theorem 1 in [8].

Theorem 1. If a function $g:(0,\infty)\times(0,\infty)\to R$ satisfies the inequality

(3)
$$|g(\varphi(x),\phi(y)) - \psi(x,y)g(x,y) - \lambda(x,y)| < \epsilon(x,y)$$

for all $x > n_1$, $y > n_2$ and a function $\psi : (0, \infty) \times (0, \infty) \to (0, \infty)$ with

$$w(x,y) := \sum_{k=0}^{\infty} \frac{\epsilon(\varphi^k(x), \phi^k(y))}{\prod_{j=0}^{k} |\psi(\varphi^j(x), \phi^j(y))|} < \infty$$

for all $x > n_1$, $y > n_2$, then there exists a unique function $f:(0,\infty) \times (0,\infty) \to (0,\infty)$

$$f(\varphi(x), \phi(y)) = \psi(x, y)g(x, y) + \lambda(x, y)$$

for all x, y > 0 and

$$\mid g(x,y) - f(x,y) \mid < w(x,y)$$

for all $x > n_1$ and $y > n_2$.

PROOF. Let $w_n:(0,\infty)\times(0,\infty)\to(0,\infty)$ and $f_n:(0,\infty)\times(0,\infty)\to R$ be functions defined by

$$w_n(x,y) := \sum_{k=0}^{n-1} \frac{\epsilon(\varphi^k(x), \phi^k(y))}{\prod_{j=0}^k | \psi(\varphi^j(x), \phi^j(y)) |}$$

for each positive integer n and for all x, y > 0 and

$$f_n(x,y) := \frac{g(\varphi^n(x), \phi^n(y))}{\prod_{j=0}^{n-1} \psi(\varphi^j(x), \phi^j(y))} - \sum_{k=0}^{n-1} \frac{\lambda(\varphi^k(x), \phi^k(y))}{\prod_{j=0}^k \psi(\varphi^j(x), \phi^j(y))}$$

for each positive integer n and for all x,y>0, respectively. By (3) we have

$$| f_{n+1}(x,y) - f_n(x,y) |$$

$$= \frac{1}{| \prod_{j=0}^n \psi(\varphi^j(x), \phi^j(y)) |} | g(\varphi^{n+1}(x), \phi^{n+1}(y))$$

$$- \psi(\varphi^n(x), \phi^n(y)) g(\varphi^n(x), \phi^n(y)) - \lambda(\varphi^n(x), \phi^n(y)) |$$

$$\leq \frac{\epsilon(\varphi^n(x), \phi^n(y))}{| \prod_{j=0}^n \psi(\varphi^j(x), \phi^j(y)) |}$$

for each position integer n and for all $x > n_1$ and $y > n_2$.

Now we use induction on n to prove

$$|f_n(x,y) - g(x,y)| \le w_n(x,y)$$

for all positive integer n and for all $x > n_1$ and $y > n_2$. For the case n = 1 the above inequality is an immediate consequence of (3). Assume that it holds true some n. Then

$$| f_{n+1}(x,y) - g(x,y) |$$

 $\leq | f_{n+1}(x,y) - f_n(x,y) | + | f_n(x,y) - g(x,y) |$
 $\leq w_{n+1}(x,y)$

for all $x > n_1$, and $y > n_2$.

We claim that $\{f_n(x,y)\}$ is a Cauchy sequence. Indeed, for n > m, $x > n_1$ and $y > n_2$ we have

$$| f_n(x,y) - f_m(x,y) |$$

$$\leq \sum_{j=m}^{n-1} | f_{j+1}(x,y) - f_j(x,y) |$$

$$\leq \sum_{k=m}^{n-1} \frac{\epsilon(\varphi^k(x), \phi^k(y))}{\prod_{j=0}^k | \psi(\varphi^j(x), \phi^j(y)) |}$$

$$= w_n(x,y) - w_m(x,y) \to 0$$

as $m \to \infty$. Hence we can define a function $\tilde{f}: (n_1, \infty) \times (n_2, \infty) \to R$ by

$$\tilde{f}(x,y) = \lim_{n \to \infty} f_n(x,y).$$

Since $f_n(\varphi(x), \phi(y)) = \psi(x, y) f_{n+1}(x, y) + \lambda(x, y)$, we have

$$\tilde{f}(\varphi(x), \phi(y)) = \psi(x, y)\tilde{f}(x, y) + \lambda(x, y)$$

for all $x > n_1$ and $y > n_2$ and

$$|\tilde{f}(x,y) - g(x,y)| = \lim_{n \to \infty} |f_n(x,y) - g(x,y)|$$

$$\leq \lim_{n \to \infty} w_{n+1}(x,y)$$

$$= w(x,y)$$

for all $x > n_1$ and $y > n_2$.

Now we extend the function \tilde{f} to $(0, \infty) \times (0, \infty)$. We define a function $f: (0, \infty) \times (0, \infty) \to R$ by $f(x, y) = \tilde{f}(x, y)$ if $x > n_1$ and $y > n_2$ and

$$f(x,y) = \frac{\tilde{f}(\varphi^k(x), \phi^k(y))}{\prod_{j=0}^{k-1} \psi(\varphi^j(x), \phi^j(y))} - \sum_{j=0}^{k-1} \frac{\lambda(\varphi^j(x), \phi^j(y))}{\prod_{j=0}^{j} \psi(\varphi^i(x), \phi^i(y))}$$

if $0 < x \le n_1$ or $0 < y \le n_2$ and k is the smallest natural number satisfying the inequalities $\varphi^k(x) > n_1$ and $\varphi^k(y) > n_2$. In the latter

case, we have

$$\begin{split} f(\varphi(x),\phi(y)) &= \frac{\tilde{f}(\varphi^{k+1}(x),\phi^{k+1}(y))}{\prod_{j=1}^{k} \psi(\varphi^{j}(x),\phi^{j}(y))} - \sum_{j=1}^{k} \frac{\lambda(\varphi^{j}(x),\phi^{j}(y))}{\prod_{i=1}^{j} \psi(\varphi^{i}(x),\phi^{i}(y))} \\ &= \frac{\tilde{f}(\varphi^{k}(x),\phi^{k}(y))}{\prod_{j=1}^{k-1} \psi(\varphi^{j}(x),\phi^{j}(y))} - \sum_{j=1}^{k-1} \frac{\lambda(\varphi^{j}(x),\phi^{j}(y))}{\prod_{i=1}^{j} \psi(\varphi^{i}(x),\phi^{i}(y))} \\ &= \psi(x,y)f(x,y) + \lambda(x,y). \end{split}$$

Thus for every x, y > 0 we have

$$f(\varphi(x), \phi(y)) = \psi(x, y)f(x, y) + \lambda(x, y).$$

If $h:(0,\infty)\times(0,\infty)\to R$ is a function which satisfies

$$h(\varphi(x), \phi(y)) = \psi(x, y)h(x, y) + \lambda(x, y)$$

for all x, y > 0 and $|h(x, y) - g(x, y)| \le w(x, y)$ for all $x > n_1$ and $y > n_2$, then

$$| f(x,y) - h(x,y) |$$

$$= | f(\varphi(x), \phi(y)) - h(\varphi(x), \phi(y)) | \frac{1}{| \psi(x,y) |}$$

$$= | f(\varphi^{n}(x), \phi^{n}(y)) - h(\varphi^{n}(x), \phi^{n}(y)) | \frac{1}{\prod_{j=0}^{n-1} | \psi(\varphi^{j}(x), \phi^{j}(y)) |}$$

$$\leq \frac{1}{\prod_{j=0}^{n-1} | \psi(\varphi^{j}(x), \phi^{j}(y)) |} (| f(\varphi^{n}(x), \phi^{n}(y)) - g(\varphi^{n}(x), \phi^{n}(y)) |$$

$$+ | g(\varphi^{n}(x), \phi^{n}(y)) - h(\varphi^{n}(x), \phi^{n}(y)) |)$$

$$\leq \frac{2w(\varphi_{n}(x), \phi_{n}(y))}{\prod_{j=0}^{n-1} | \psi(\varphi^{j}(x), \phi^{j}(y)) |} = 2[w(x, y) - w_{n}(x, y)] \to 0$$

as $n \to \infty$. This implies the uniqueness of f.

The functional equation

$$g(x+1, y+1) = \frac{xy}{(x+y)(x+y+1)}g(x,y)$$

.

for all x, y > 0 is called "the beta functional equation". Since

$$\sum_{j=0}^{\infty} \prod_{i=0}^{j} \frac{(x+i)(y+i)}{(x+y+2i)(x+y+2i+1)} < \infty$$

and

$$\sum_{i=0}^{\infty} \prod_{i=0}^{j} \frac{(x+y+2i)(x+y+2i+1)}{(x+i)(y+i)}$$

for each x, y > 0, we investigate the stability of the same beta functional equation

$$g(x+1,y+1)^{-1} = \frac{(x+y)(x+y+1)}{xy}g(x,y)^{-1}$$

for all x, y > 0. It is well known that the beta function

$$B(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt$$

is a solution of the beta functional equation.

COROLLARY 2. If a mapping $g:(0,\infty)\times(0,\infty)\to(0,\infty)$ satisfies the inequality

$$|g(x+1,y+1)^{-1} - \frac{(x+y)(x+y+1)}{xy}g(x,y)^{-1}| \le \delta$$

for all $x > n_1$ and $y > n_2$, then there exists a unique function $f: (0, \infty) \times (0, \infty) \to (0, \infty)$ such that f is a solution of the beta functional equation and satisfies the inequality

$$|g(x,y)^{-1} - f(x,y)^{-1}| \le \frac{xy}{(x+y)(x+y+1)}\delta$$

for all $x > n_1$ and $y > n_2$.

PROOF. We apply Theorem 2.1 with $\varphi(x)=x+1, \phi(y)=y+1, \lambda(x,y)=0$ and $\psi(x,y)=\frac{(x+y)(x+y+1)}{xy}$. For any x,y>0 we have

$$\sum_{k=0}^{\infty} \prod_{j=0}^{k} \frac{\delta}{\psi(\varphi^{j}(x), \phi^{j}(y))} \leq \frac{\delta}{\psi(x, y)} \sum_{k=0}^{\infty} \frac{1}{2^{k}} = \frac{2\delta}{\psi(x, y)}.$$

,

By Theorem 2.1, there exists a unique function $F:(0,\infty)\times(0,\infty)\to(0,\infty)$ such that

$$F(x+1, y+1) = \frac{(x+y)(x+y+1)}{xy}F(x, y)$$

for all x, y > 0, and

$$|g(x,y)^{-1} - F(x,y)| \le \frac{xy}{(x+y)(x+y+1)} 2\delta$$

for all $x > n_1$ and $y > n_2$. Let $F(x, y) = f(x, y)^{-1}$ for all x, y > 0. Then we complete the proof of Corollary.

Consider the Schröder functional equation with two variables

$$f(\varphi(x), \phi(y)) = kf(x, y).$$

For example, $f(x,y)=e^{x+y}$ is a solution of a Schröder functional equation

$$f(x+1, y+1) = e^2 f(x, y).$$

As an application of Theorem 2.1, we can derive the following corollary, concerning the Hyers-Ulam stability of the Schröder functional equation.

COROLLARY 3. Let k > 1 and $\delta > 0$. If a function $g:(0,\infty) \times (0,\infty) \to R$ satisfies the inequality

$$\mid g(\varphi(x),\phi(y)) - kg(x,y)\mid \ < \delta$$

for all $x > n_1$ and $y > n_2$, then there exists a unique function $f: (0,\infty) \times (0,\infty) \to R$ such that

$$f(\varphi(x),\phi(y)) - kf(x,y) = 0$$

for all x, y > 0 and

$$\mid g(x,y) - f(x,y) \mid \leq \frac{\delta}{k-1}$$

for all $x > n_1$ and $y > n_2$.

PROOF. By Theorem 2.1 with $\lambda(x,y) = 0$, $\psi(x,y) = k$, and $\epsilon(x,y) = \delta$, we have

$$w(x,y) = \delta \sum_{i=0}^{\infty} \frac{1}{k^{i+1}} = \frac{\delta}{k-1}$$

for all x, y > 0, and so we complete the proof of Corollary.

3. Stability in the sense of R. Ger of the functional equation (2)

The following result is a generalization of Theorem 2 in [8].

THEOREM 4. Let $g:(0,\infty)\times(0,\infty)\to(0,\infty)$ be a function that satisfies the inequality

$$\left| \frac{g(\varphi(x), \phi(y))}{\psi(x, y)g(x, y)} - 1 \right| \le \epsilon(x, y)$$

for all $x > n_1$ and $y > n_2$, where $\epsilon : (0, \infty) \times (0, \infty) \to (0, 1)$ and $\psi : (0, \infty) \times (0, \infty) \to (0, \infty)$ are functions such that for all $x > n_1$ and $y > n_2$

$$\alpha(x,y) := \sum_{j=0}^{\infty} \log(1 - \epsilon(\varphi^{j}(x), \phi^{j}(y))) < \infty$$

and

$$\beta(x,y) := \sum_{j=0}^{\infty} \log(1 + \epsilon(\varphi^{j}(x), \phi^{j}(y))) < \infty.$$

Then there exists a unique function $f:(0,\infty)\times(0,\infty)\to(0,\infty)$ such that for all x,y>0

$$f(\varphi(x),\phi(y))=\psi(x,y)f(x,y)$$

and

$$e^{\alpha(x,y)} \le \frac{f(x,y)}{g(x,y)} \le e^{\beta(x,y)}$$

for all $x > n_1$ and $y > n_2$.

PROOF. Let $f_n:(0,\infty)\times(0,\infty)\to R$ be the function defined by for each position integer n,

$$f_n(x,y) := \frac{g(\varphi^n(x), \phi^n(y))}{\prod_{j=0}^{n-1} \psi(\varphi^i(x), \phi^i(y))}.$$

For any $x > n_1$, $y > n_2$ and for all positive integer m, n with n > m, we have

$$\frac{f_n(x,y)}{f_m(x,y)} = \frac{g(\varphi^n(x),\phi^n(y))}{g(\varphi^m(x),\phi^m(y))} \cdot \frac{1}{\prod_{j=m}^{n-1} \psi(\varphi^j(x),\phi^j(y))}$$
$$= \prod_{j=m}^{n-1} \frac{g(\varphi^{j+1}(x),\phi^{j+1}(y))}{\psi(\varphi^j(x),\phi^j(y))g(\varphi^j(x),\phi^j(y))}.$$

By (4), we have

$$0 < 1 - \epsilon(\varphi^{j}(x), \phi^{j}(y))$$

$$\leq \frac{g(\varphi^{j+1}(x), \phi^{j+1}(y))}{\psi(\varphi^{j}(x), \phi^{j}(y))g(\varphi^{j}(x), \phi^{j}(y))}$$

$$\leq 1 + \epsilon(\varphi^{j}(x), \phi^{j}(y))$$

for all $x > n_1$ and $y > n_2$. Thus for all $x > n_1$ and $y > n_2$ we have

$$\prod_{j=m}^{n-1} (1 - \epsilon(\varphi^{j}(x), \phi^{j}(y)) \le \frac{f_{n}(x, y)}{f_{m}(x, y)} \le \prod_{j=m}^{n-1} (1 + \epsilon(\varphi^{j}(x), \phi^{j}(y)))$$

or

$$\sum_{j=m}^{n-1} \log(1 - \epsilon(\varphi^j(x), \phi^j(y)) \le \log f_n(x, y) - \log f_m(x, y)$$

$$\le \sum_{j=m}^{n-1} \log(1 + \psi(\varphi^j(x), \phi^j(y)).$$

Since these series converge by assumption, $\{\log f_n(x,y)\}$ is a Cauchy sequence for all $x > n_1$ and $y > n_2$. Now we can define

$$L(x,y) := \lim_{n \to \infty} \log f_n(x,y)$$

and

$$\tilde{f}(x,y) = e^{L(x,y)} = \lim_{n \to \infty} f_n(x,y)$$

for all $x > n_1$ and $y > n_2$. It is easy to see that

$$\tilde{f}(\varphi(x), \phi(y)) = \lim_{n \to \infty} f_n(\psi(x), \phi(y))
= \lim_{n \to \infty} \varphi(x, y) f_{n+1}(\psi(x), \phi(y))
= \varphi(x, y) \tilde{f}(x, y).$$

Now we extend the function \tilde{f} to $(0, \infty) \times (0, \infty)$. We defined a function $f:(0,\infty)\times(0,\infty)\to(0,\infty)$ by $f(x,y)=\tilde{f}(x,y)$ if $x>n_1$, and $y>n_2$ and

$$f(x,y) = \frac{\tilde{f}(\varphi^{n}(x), \phi^{n}(y))}{\prod_{i=0}^{n-1} \psi(\varphi^{j}(x), \phi^{j}(y))}$$

if $0 < x \le n_1$ or $0 < y \le n_2$ and k is the smallest natural number satisfying the inequalities $\varphi^k(x) > n_1$ and $\varphi^k(y) > n_2$. In the latter case, we have

$$f(\varphi(x), \phi(y)) = \frac{\tilde{f}(\varphi^{n+1}(x), \phi^{n+1}(y))}{\prod_{i=1}^{n} \psi(\varphi^{i}(x), \phi^{i}(y))} = \psi(x, y) f(x, y).$$

Thus for every x, y > 0,

$$f(\varphi(x), \phi(y)) = \psi(x, y)f(x, y).$$

Since for every $x > n_1$ and $y > n_2$

$$\frac{f_n(x,y)}{g(x,y)} = \prod_{j=0}^{n-1} \frac{g(\varphi^{j+1}(x), \phi^{j+1}(y))}{\psi(\varphi^j(x), \phi^j(y))g(\varphi^j(x), \phi^j(y))},$$

we get

$$\prod_{j=0}^{n-1} (1 - \epsilon(\varphi^j(x), \phi^j(y))) \le \frac{f_n(x, y)}{g(x, y)} \le \prod_{j=0}^{n-1} (1 + \epsilon(\varphi^j(x), \phi^j(y))).$$

This implies that

$$e^{\alpha(x,y)} \le \frac{f(x,y)}{g(x,y)} \le e^{\beta(x,y)}$$

for all $x > n_1$, and $y > n_2$. Now it remain only to prove the uniqueness of f. Assume that $h: (0, \infty) \times (0, \infty) \to (0, \infty)$ is some solution of equation (2) which satisfies (4). By equation (2),

$$\frac{f(x,y)}{h(x,y)} = \frac{f(\varphi(x),\phi(y))}{h(\varphi(x),\phi(y))} = \frac{f(\varphi^n(x),\phi^n(y))}{g(\varphi^m(x),\phi^m(y))} \frac{g(\varphi^n(x),\phi^n(y))}{h(\varphi^n(x),\phi^n(y))}$$

for any x, y > 0 and for all n. Hence we have

$$\frac{e^{\alpha(\varphi^n(x),\phi^n(y))}}{e^{\beta(\varphi^n(x),\phi^n(y))}} \le \frac{f(x,y)}{h(x,y)} \le \frac{e^{\beta(\varphi^n(x),\phi^n(y))}}{e^{\alpha(\varphi^n(x),\phi^n(y))}}$$

for all x, y > 0. Note that for any $\alpha(\varphi^n(x), \phi^n(y)) \to 0$ as $n \to \infty$ and $\beta(\varphi^n(x), \phi^n(y)) \to 0$ as $n \to \infty$. Thus, it is obvious that f(x, y) = h(x, y) for all x, y > 0.

COROLLARY 5. Let $g:(0,\infty)\times(0,\infty)\to(0,\infty)$ be a function which satisfies the inequality

$$|\frac{xy}{(x+y)(x+y+1)} \cdot \frac{g(x,y)}{g(x+1,y+1)} - 1| \le \epsilon(x,y)$$

for all $x, y > n_0$, where $\epsilon : (0, \infty) \times (0, \infty) \to (0, 1)$ is a function such that

$$\alpha(x,y) := \sum_{j=0}^{\infty} \log(1 - \epsilon(x+j, y+j))$$

and

$$\beta(x,y) := \sum_{j=0}^{\infty} \log(1 + \epsilon(x+j,y+j))$$

are bounded for all $x, y > n_0$. Then there exists a unique solution

$$f:(0,\infty)\times(0,\infty)\to(0,\infty)$$

of the functional equation (2) with

$$e^{\alpha(x,y)} \le \frac{f(x,y)^{-1}}{g(x,y)^{-1}} \le e^{\beta(x,y)}$$

for all $x, y > n_0$.

PROOF. Follows from Theorem 3.1 for $\varphi(x) = x + 1$, $\phi(y) = y + 1$,

$$\psi(x,y) = \frac{(x+y)(x+y+1)}{xy},$$

and $G(x, y) = g(x, y)^{-1}$.

COROLLARY 6. Let k_1 , $k_2 > 1$ and $\delta > 0$. If $g:(0,\infty)\times(0,\infty)\to(0,\infty)$ satisfies the inequality

$$\left| \frac{g(k_1x, k_2y)}{\psi(x, y)g(x, y)} - 1 \right| < \frac{\delta}{x + y}$$

for all $x,y>\frac{\delta}{2}$, then there exists a unique function $f:(0,\infty)\times(0,\infty)\to(0,\infty)$ such that for all x,y>0

$$f(k_1x, k_2y) = \psi(x, y)f(x, y)$$

and

$$e^{\alpha(x,y)} \le \frac{f(x,y)}{g(x,y)} \le e^{\beta(x,y)}.$$

PROOF. Let $\varphi(x) = k_1 x$ and $\varphi(y) = k_2 y$ and $\epsilon(x, y) = \frac{\delta}{x+y}$. Then

$$\alpha(x,y) = \sum_{j=0}^{\infty} \log(1 - \frac{\delta}{k_1^j x + k_2^j y}) < \infty$$

and

$$\beta(x,y) = \sum_{j=0}^{\infty} \log(1 + \frac{\delta}{k_1^j x + k_2^j y}) < \infty$$

for all $x, y > \frac{\delta}{2}$. By Theorem 3.1, we complete the proof.

References

- [1] J. Baker, J. Lawrence and F. Zorzitto, The stability of the equation f(x+y) = f(x) + f(y), Proc. Amer. Math. Soc. **74** (1979), 242–246.
- [2] C. Borelli, On Hyers-Ulam stability for a class of functional equations, Aequationes Math. 54 (1997), 74-86.
- [3] G. L. Forti, Hyers-Ulam stability of functional equations in several variables, Aequationes Math. 50 (1995), 146-190.
- [4] R. Ger, Superstability is not natural, Roczik Naukowo-Dydaktyczny WSP W. Krakowie, Prace Mat. 159 (1993), 109–123.
- [5] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA. 27 (1941), 222–224.
- [6] D. H. Hyers and Th. M. Rassias, Approximate homomorphisms, Aequationes Math. 44 (1992), 125–153.
- [7] D. H. Hyers, G. Isac, and Th. M. Rassias, Stability of functional equations in several variables, Birkhäuser-Basel-Berlin (1998).
- [8] K. W. Jun, G. H. Kim and Y. W. Lee, Stability of generalized gamma and beta functional equations, Aequationes Math. 60 (2000), 15-24.
- [9] S. M. Jung, On the general Hyers-Ulam stability of gamma functional equation, Bull. Korean Math. Soc. 34 (1997), no. 3, 437-446.
- [10] _____, On the stability of the gamma functional equation, Results Math. 33 (1998), 306-309.
- [11] G. H. Kim and Y. W. Lee, The stability of the beta functional equation, Babes-Bolyai Mathematica, XLV (1) (2000), 89-96.
- [12] Y. W. Lee, On the stability of a quadratic Jensen type functional equation, J. Math. Anal. Appl. 270 (2002), 590-601.
- [13] _____, The stability of derivations on Banach algebras, Bull. Inst. Math. Acad. Sinica. 28 (2000), 113-116.

- [14] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. **72** (1978), 297–300.
- [15] T. Trif, On the stability of a gamma-type functional equation, to appear.
- [16] S. M. Ulam, "Problems in Modern Mathematics" Chap. VI, Science editions, Wiley, New York (1964).

Department of Computer and Information Security
Daejeon University
Daejeon 300-716, Korea
E-mail: ywlee@dju.ac.kr
bmchoi@dju.ac.kr

