카오스 이동 로봇에서의 카오스 거동 해석

Chaotic Behaviour Analysis for Chaotic Mobile Robot

  • 배영철 (여수대학교 공과대학 전자통신전기공학부) ;
  • 김천석 (여수대학교 공과대학 전자통신전기공학부)
  • 발행 : 2004.11.01

초록

본 논문에서는 Arnold 방정식, Chua 방정식, 하이퍼카오스 방정식을 이동 로봇에 내장한 카오스 이동 로봇에서의 카오스 거동을 해석하였다. 이동 로봇에서의 카오스 거동을 분석하기 위해서 시계열데이터, 임베딩 위상공간의 정성적인 분석뿐만 아니라 리아프노프 지수와 같은 정량적인 분석을 수행하였다.

In this paper, we propose that the chaotic behavior analysis in the chaotic mobile robot embedding Arnold, equation, Chua's equation and hyper-chaos equation. In order to analysis of chaotic behavior in the mobile robot, we apply not only qualitative analysis such as time-series, embedding phase plane, but also quantitative analysis such as Lyapunov exponent in the mobile robot with obstacle.

키워드

참고문헌

  1. E. Ott, C.Grebogi, and J.A York,'Controlling Chaos', Phys. Rev.Lett., vol. 64,no.1196-1199, 1990 https://doi.org/10.1103/PhysRevLett.64.1196
  2. T. Shinbrot, C.Grebogi, E.Ott, and J.A.Yorke,' Using small perturbations to controlchaos', Nature, vol. 363, pp. 411-417, 1993 https://doi.org/10.1038/363411a0
  3. M. Itoh, H. Murakami and L. O Chua,'Communication System Via ChaoticModulations' IEICE. Trans. Fundmentals.vo1.E77-A, no. , pp.1000-1005, 1994
  4. L. O. Chua, M. Itoh, L. Kocarev, and K.Eckert, 'Chaos Synchronization in Chua'sCircuit' J. Circuit. Systems and computers,vol. 3, no. 1, pp. 93-108, 1993 https://doi.org/10.1142/S0218126693000071
  5. M. Itoh, K. Komeyama, A. Ikeda and L.O.Chua, ' Chaos Synchronization in CoupledChua Circuits', IEICE. NLP. 92-51. pp.33-40. 1992
  6. K. M. Short, ' Unmasking a modulatedchaotic communications scheme', Int. J.Bifurcation and Chaos, vol. 6, no. 2, pp.367-375, 1996 https://doi.org/10.1142/S0218127496000114
  7. L. Kocarev, 'Chaos-based cryptography: Abrief overview,' IEEE, Vol. pp. 7-21. 2001
  8. M. Bertram and A. S. Mikhailov, 'Patternformation on the edge of chaos:Mathematical modeling of CO oxidation ona Pt(llO) surface under global delayed feedback', Phys. Rev. E 67, pp. 036208, 2003
  9. K. Krantz, f. H. Yousse, R.W , Newcomb,'Medical usage of an expert system forrecognizing chaos', Engineering in Medicineand Biology Society, 1988. Proceedings ofthe Annual International Conference of the IEEE , 4-7, pp. 1303 -1304,1988
  10. Nakamura, A. , Sekiguchi. 'The chaoticmobile robot', IEEE Transactions onRobotics and Automation, Volume: 17Issue: 6 , pp. 898 -904, 2001 https://doi.org/10.1109/70.976022
  11. F. Takens, 'Detecting strange attractors inturbulence in Dynamical systems andturbulence', Lecture Notes in Mathematics,898, pp. 363-381, Springer, 1998
  12. J.P. Eckmann, S.O.Kamphorst, D.Ruelle,S.Ciliberto,'Liapunov exponents from timeseries', Phys. Rev. A34(6), pp. 4971-4979,1986
  13. Okamoto and H. Fujii, Nonlinear Dynamics,Iwanami Lectures of Applied Mathematics,Iwanami, Tokyo, 1995, vol. 14
  14. Y. Bae, J. Kim, Y.Kim, 'The obstaclecollision avoidance methods in the chaoticmobile robot', 2003 ISIS, pp.591-594, 2003
  15. Y. Bae, J. Kim, Y.Kim, 'Chaotic behavioranalysis in the mobile robot: the case ofChua's equation' , Proceeding of KFIS FallConference 2003, vol. 13, no. 2, pp.5-8,2003
  16. Y. Bae, J. Kim, Y.Kim, 'Chaotic behavior analysis in the mobile robot: the case of Arnold equation', Proceeding of KFIS Fall Conference 2003, vol. 13, no. 2, pp110-113, 2003