INFERENCE FOR PEAKEDNESS ORDERING BETWEEN TWO DISTRIBUTIONS

  • Oh, Myong-Sik (Department of Statistics, Pusan University of Foreign Studies)
  • Published : 2004.09.01

Abstract

The concept of dispersion is intrinsic to the theory and practice of statistics. A formulation of the concept of dispersion can be obtained by comparing the probability of intervals centered about a location parameter. This is the peakedness ordering introduced first by Birnbaum (1948). We consider statistical inference concerning peakedness ordering between two arbitrary distributions. We propose non parametric maximum likelihood estimators of two distributions under peakedness ordering and a likelihood ratio test for equality of dispersion in the sense of peakedness ordering.

Keywords

References

  1. BARLOW, R. E. AND BRUNK, H. D. (1972). 'The isotonic regression problem and its dual', Journal of the American Statistical Association, 61, 140-147
  2. BICKEL, P. J. AND LEHMANN, E. L. (1979). 'Descriptive statistics for nonparametric models IV. Spread', In Contributions to Statistics, Jaroslaw Hajek Memorial Volume (J. Jureckova, ed.), 33-40, Reidel, Dordrecht
  3. BIRNBAUM, Z. W. (1948). 'On random variables with comparable peakedness', The Annals of Mathematical Statistics, 19, 76-81 https://doi.org/10.1214/aoms/1177730293
  4. DYKSTRA, R. L., MADSEN, R. W. AND FAIRBANKS, K. (1983). 'A nonparametric likelihood ratio test', Journal of Statistical Computation and Simulation, 18, 247-264 https://doi.org/10.1080/00949658308810702
  5. EL BARMI, H. AND ROJO, J. (1996). 'Likelihood ratio tests for peakedness in multinomial populations', Journal of Nonparametric Statistics, 1, 221-237
  6. FRANCK, W. E. (1984). 'A likelihood ratio test for stochastic ordering', Journal of the American Statistical Association, 19, 686-691
  7. KARLIN, S. (1968). Total Positivity, Stanford University Press, CA
  8. LEE, C. I. C. (1987). 'Maximum likelihood estimates for stochastically ordered multinomial populations with fixed and random zeros', Foundation of Statistical Inference (I. B. MacNeill and G. J. Umphrey eds.), 189-197
  9. O'NEILL, T. J., TALLIS, G. M. AND LEPPARD, P. (1985). 'The epidemiology of a disease using hazard functions', The Australian Journal of Statistics, 21, 283-297
  10. PROSCHAN, F. (1965). 'Peakedness of distributions of convex combinations', The Annals of Mathematical Statistics, 36, 1703-1706 https://doi.org/10.1214/aoms/1177699798
  11. ROBERTSON, T. AND WRIGHT, F. T. (1981). 'Likelihood ratio tests for and against a stochastic ordering between multinomial populations', The Annals of Statistics, 9, 1248-1257 https://doi.org/10.1214/aos/1176345641
  12. ROBERTSON, T. AND WRIGHT, F. T. (1983). 'On approximation of the level probabilities and associated distributions in order restricted inference', Biometrika, 70, 597-606 https://doi.org/10.1093/biomet/70.3.597
  13. ROBERTSON, T., WRIGHT, F. T. AND DYKSTRA, R. L. (1988). Order Restricted Statistical Inference, Wiley, Chichester
  14. ROJO, J. AND SAMANIEGO, F. J. (1991). 'On nonparametric maximum likelihood estimation of a distribution uniformly stochastically smaller than a standard', Statistics & Probability Letters, 11, 267-271 https://doi.org/10.1016/0167-7152(91)90154-J
  15. SCHWEDER, T. (1982). 'On the dispersion of mixtures', Scandinavian Journal of StatisticsTheory and Applications, 9, 165-169
  16. SHAKED, M. (1980). 'On Mixtures from exponential families', Journal of the Royal Statistical Society, B42, 192-198
  17. SHAKED, M. (1982). 'Dispersive ordering of distributions', Journal of Applied Probability, 19, 310-320 https://doi.org/10.2307/3213483
  18. WANG, Y. (1996). 'A likelihood ratio test against stochastic ordering in several populations', Journal of the American Statistical Association, 91, 1676-1683 https://doi.org/10.2307/2291595